Accesso libero

Influence of “Productive” Impurities (Cd, Na, O) on the Properties of the Cu2ZnSnS4 Absorber of Model Solar Cells

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Khan, M.R., Patel, M.T., Asadpour, R., Imran, H., Butt, N.Z., & Alam, M.A. (2021). A Review of Next Generation Bifacial Solar Farms: Predictive Modeling of Energy Yield, Economics, and Reliability. Journal of Physics D-Applied Physics, 54 (32), 323001. DOI: 10.1088/1361-6463/abfce510.1088/1361-6463/abfce5 Search in Google Scholar

2. Veremiichuk, Y., Yarmoliuk, O., Pustovyi, A., Mahnitko, A., Zicmane, I., & Lomane, T. (2020). Features of Electricity Distribution Using Energy Storage in Solar Photovoltaic Structure. Latvian Journal of Physics and Technical Sciences, 5, 18–29. DOI: 10.2478/lpts-2020-002410.2478/lpts-2020-0024 Search in Google Scholar

3. Tao, L., Qiu, J., Sun, B., Wang, X., Ran, X., Song, L., …, & Chen, Y. (2021). Stability of Mixed-Halide Wide Bandgap Perovskite Solar Cells: Strategies and Progress. Journal of Energy Chemistry, 61, 395–415. DOI: 10.1016/j.jechem.2021.03.0382095-4956 Search in Google Scholar

4. Bezrukovs, D., Bezrukovs, V., Bezrukovs, Vl., Konuhova, M., & Aniskevich, S. (2020). The Comparison of the Efficiency of Small Wind Turbine Generators with Horizontal and Vertical Axis under Low Wind Conditions. Latvian Journal of Physics and Technical Sciences, 5, 61–72. DOI: 10.2478/lpts-2020-002810.2478/lpts-2020-0028 Search in Google Scholar

5. Groza, E., Balodis, M., Gulbis, K., & Dirba, J. (2021). Benefits of Energy Storage Systems for Small-Scale Wind Farm Development in Latvia. Latvian Journal of Physics and Technical Sciences, 2, 11–18. DOI: 10.2478/lpts-2021-000810.2478/lpts-2021-0008 Search in Google Scholar

6. Trota, A., Ferreira, P., Gomes, L., Cabral, J., & Kallberg, P. (2019). Power Production Estimates from Geothermal Resources by Means of Small-Size Compact Climeon Heat Power Converters: Case Studies from Portugal (Sete Cidades, Azores and Longroiva Spa, Mainland). Energies, 12 (14), 2838. DOI: 10.3390/en1214283810.3390/en12142838 Search in Google Scholar

7. Ciceron, J., Badel, A., & Tixador, P. (2017). Superconducting Magnetic Energy Storage and Superconducting Self-Supplied Electromagnetic Launcher. European Physical Journal – Applied Physics, 80 (2), 20901. DOI: 10.1051/epjap/201716045210.1051/epjap/2017160452 Search in Google Scholar

8. Zhang, Y., Jia, X., Liu, S., Zhang, B., Lin, K., Zhang, J., & Conibeer, G. (2021). A Review on Thermalization Mechanisms and Prospect Absorber Materials for the Hot Carrier Solar Cells. Solar Energy Materials and Solar Cells, 225, 111073. DOI: 10.1016/j.solmat.2021.11107310.1016/j.solmat.2021.111073 Search in Google Scholar

9. Bello, M., & Shanmugan, S. (2020). Achievements in Mid and High-Temperature Selective Absorber Coatings by Physical Vapor Deposition (PVD) for Solar Thermal Application. Journal of Alloys and Compounds, 839, 155510. DOI: 10.1016/j.jallcom.2020.15551010.1016/j.jallcom.2020.155510 Search in Google Scholar

10. Kaulachs, I., Ivanova, A., Holsts, A., Roze, M., Flerov, A., Tokmakov, A., …, & Rutkis, M. (2021). Perovskite CH3NH3PbI3–XClx Solar Cells. Experimental Study of Initial Degradation Kinetics and Fill Factor Spectral Dependence. Latvian Journal of Physics and Technical Sciences, 1, 53–69. DOI: 10.2478/lpts-2021-000610.2478/lpts-2021-0006 Search in Google Scholar

11. Mandal, P., Debbarma, J., & Saha, M. (2021). A Review on the Emergence of Graphene in Photovoltaics Industry. Biointerface Research in Applied Chemistry, 11 (6), 15009–15036. DOI: 10.33263/BRIAC116.150091503610.33263/BRIAC116.1500915036 Search in Google Scholar

12. Sergeyev, D.M., & Duisenova, A.G. (2021). Electron Transport in Model Quasi-Two-Dimensional van der Waals Nanodevices. Technical Physics Letters, 47 (4), 375–378. DOI: 10.1134/S106378502104029510.1134/S1063785021040295 Search in Google Scholar

13. Meng, Zh., Stolz, R.M., Mendecki, L., & Mirica, K.A. (2019). Electrically-Transduced Chemical Sensors Based on Two-Dimensional Nanomaterials. Chem. Rev, 119, 478–598. DOI: 10.1021/acs.chemrev.8b0031110.1021/acs.chemrev.8b00311 Search in Google Scholar

14. Koch, R.J., Konstantinova, T., Abeykoon, M., Wang, A., Petrovic, C., Zhu, Y., …, & Billinge, L. (2019). Room Temperature Local Nematicity in FeSe Superconductor. Phys. Rev. B, 100, 020501. DOI:10.1103/PhysRevB.100.02050110.1103/PhysRevB.100.020501 Search in Google Scholar

15. Sergeyev, D.M. (2013). Plasma Frequency in Josephson Junctions with a Non-Sinusoidal Current-Phase Relation. Solid State Phenomena, 200, 272–275. DOI: 10.4028/www.scientific.net/SSP.200.27210.4028/www.scientific.net/SSP.200.272 Search in Google Scholar

16. Sergeyev, D.M. (2012). About Tunneling of Pairs of the Cooper Pairs through the Josephson Junctions in Exotic Superconductors. Russian Physics Journal, 55 (1), 84–91. DOI: 10.1007/s11182-012-9779-410.1007/s11182-012-9779-4 Search in Google Scholar

17. Balakhayeva, R., Akilbekov, A., Baimukhanov, Z., Usseinov, A., Giniyatova, S., Zdorovets, M., …, & Dauletbekova, A. (2021). CdTe Nanocrystal Synthesis in SiO2/Si Ion-Track Template: The Study of Electronic and Structural Properties. Physica Status Solidi A, 218 (1), 2000231. DOI: 10.1002/pssa.20200023110.1002/pssa.202000231 Search in Google Scholar

18. Sergeyev, D.M. (2018). Computer Simulation of Electrical Characteristics of a Graphene Cluster with Stone-Wales Defects. J. Nano-Electron. Phys., 10 (3), 03018. DOI: 10.21272/jnep.10(3).0301810.21272/jnep.10(3).03018 Search in Google Scholar

19. Chuan, M.W., Lau, J.Y., Wong, K.L., Hamzah, A., Alias, N.E., Lim, C.S., & Tan, M.L.P. (2021). Low-Dimensional Modelling of n-Type Doped Silicene and its Carrier Transport Properties for Nanoelectronic Applications. Advances in Nano Reseach, 10 (5), 415–422. DOI: 10.12989/anr.2021.10.5.415 Search in Google Scholar

20. Sergeyev, D. (2021). One-Dimensional Schottky Nanodiode Based on Telescoping Polyprismanes. Advances in Nano Reseach, 10 (4), 339–347. DOI: 10.12989/anr.2021.10.4.339 Search in Google Scholar

21. Zeng, X., Lontchi, J., Zhukova, M., Fourdrinier, L., Qadir, I., Ren, Y., …, & Flandre, D. (2021). High-Responsivity Broadband Photodetection of an Ultra-Thin In2S3/CIGS Heterojunction on Steel. Optics Letters, 46 (10), 2288–2291. DOI: 10.1364/OL.42399910.1364/OL.42399933988566 Search in Google Scholar

22. Witte, W., Hempel, W., Paetel, S., Menner, R., & Hariskos, D. (2021). Effects of Sputtered InxSy Buffer on CIGS with RbF Post-Deposition Treatment. ECS Journal of Solid State Science and Technology, 10 (5), 055006. DOI: 10.1149/2162-8777/abfc2110.1149/2162-8777/abfc21 Search in Google Scholar

23. Yang, H., Jiang, G., Wang, W., & Mei, X. (2021). Femtosecond Laser Fabrication of Micro and Nano-Structures on CIGS/ITO Bilayer Films for Thin-Film Solar Cells. Materials, 14 (9), 2413. DOI: 10.3390/ma1409241310.3390/ma14092413812483834066422 Search in Google Scholar

24. Novikov, G.F., & Gapanovich, M.V. (2017). Third Generation Cu-In-Ga-(S,-Se) Based Solar Inverters. Phys. Usp., 60, 161–178. DOI: 10.3367/UFNe.2016.06.03782710.3367/UFNe.2016.06.037827 Search in Google Scholar

25. Milichko, V.A., Shalin, A.S., Mukhin, I.S., Kovrov, A.E., Krasilin, A.A., Vinogradov, A.V., …, & Simovskii, C.R. (2016). Solar Photovoltaics: Current State and Trends. Phys. Usp., 59, 727–772.DOI: 10.3367/UFNe.2016.02.03770310.3367/UFNe.2016.02.037703 Search in Google Scholar

26. Smidstrup, S., Stradi, D., Wellendorff, J., Khomyakov, P.A., Vej-Hansen, U.G., Lee, M-E., …, & Stokbro, K. (2017). First-Principles Green’s-Function Method for Surface Calculations: A Pseudopotential Localized Basis Set Approach, Phys. Rev. B, 96, 195309. DOI: 10.1103/PhysRevB.96.19530910.1103/PhysRevB.96.195309 Search in Google Scholar

27. Atomistix ToolKit. Manual Version. (2015). QuantumWise A/S, 1, 840. Search in Google Scholar

28. Burgelman, M., Nollet, P., & Degrave, S. (2000). Modelling Polycrystalline Semiconductor Solar Cells. Thin Solid Films, 361–362, 527–532. DOI: 10.1016/S0040-6090(99)00825-110.1016/S0040-6090(99)00825-1 Search in Google Scholar

29. Decock, K., Zabierowski, P., & Burgelman, M. (2012). Modeling Metastabilities in Chalcopyrite-Based Thin Film Solar Cells. Journal of Applied Physics, 111, 043703. DOI: 10.1063/1.368665110.1063/1.3686651 Search in Google Scholar

30. Burgelman, M., Decock, K., Khelifi, S., & Abass, A. (2013). Advanced Electrical Simulation of Thin Film Solar Cells. Thin Solid Films, 535, 296–301. DOI: 10.1016/j. tsf.2012.10.032 Search in Google Scholar

31. Decock, K., Khelifi, S., & Burgelman, M. (2011). Modelling Multivalent Defects in Thin Film Solar Cells. Thin Solid Films, 519, 7481–7484. DOI: 10.1016/j.tsf.2010.12.03910.1016/j.tsf.2010.12.039 Search in Google Scholar

32. Sychikova, Y.A., Kidalov, V.V., & Sukach, G.A. (2013). Dependence of the Threshold Voltage in Indium-Phosphide Pore Formation on the Electrolyte Composition. J. Synch. Investig., 7, 626–630. DOI: 10.1134/S102745101303013010.1134/S1027451013030130 Search in Google Scholar

33. Suchikova, J. A. (2015). Synthesis of Indium Nitride Epitaxial Layers on a Substrate of Porous Indium Phosphide. Journal of Nanoand Electronic Physics, 7 (3), 3017–1. Search in Google Scholar

34. Eglitis, R., Purans, J., Popov, A. I., & Jia, R. (2019). Systematic Trends in YAlO3, SrTiO3, BaTiO3, BaZrO3 (001) and (111) Surface ab initio Calculations. International Journal of Modern Physics B, 33 (32), 1950390. DOI: 10.1142/S021797921950390910.1142/S0217979219503909 Search in Google Scholar

35. Eglitis, R., Popov, A. I., Purans, J., & Jia, R. (2020). First Principles Hybrid Hartree-Fock-DFT Calculations of Bulk and (001) Surface F Centers in Oxide Perovskites and Alkaline-Earth Fluorides. Low Temperature Physics, 46 (12), 1206–1212. DOI: 10.1063/10.000247510.1063/10.0002475 Search in Google Scholar

36. Eglitis, R. I., Purans, J., Gabrusenoks, J., Popov, A. I., & Jia, R. (2020). Comparative ab initio Calculations of ReO3, SrZrO3, BaZrO3, PbZrO3 and CaZrO3 (001) Surfaces. Crystals, 10 (9), 745. DOI: 10.3390/cryst1009074510.3390/cryst10090745 Search in Google Scholar

37. Rusevich, L. L., Kotomin, E. A., Zvejnieks, G., & Popov, A. I. (2020). Ab initio Calculations of Structural, Electronic and Vibrational Properties of BaTiO3 and SrTiO3 Perovskite Crystals with Oxygen Vacancies. Low Temperature Physics, 46 (12), 1185–1195. DOI: 10.1063/10.000247210.1063/10.0002472 Search in Google Scholar

38. Krainyukova, N. V., Hamalii, V. O., Peschanskii, A. V., Popov, A. I., & Kotomin, E. A. (2020). Low Temperature Structural Transformations on the (001) Surface of SrTiO3 Single Crystals. Low Temperature Physics, 46 (7), 740–750. DOI: 10.1063/10.000137210.1063/10.0001372 Search in Google Scholar

39. Krainyukova, N. V., Kuchta, B., Firlej, L., & Pfeifer, P. (2020). Absorption of Atomic and Molecular Species in Carbon Cellular Structures. Low Temperature Physics, 46 (3), 219–231. DOI: 10.1063/10.000070510.1063/10.0000705 Search in Google Scholar

40. Suchikova, Y., Vambol, S., Vambol, V., & Mozaffari, N. (2019). Justification of the Most Rational Method for the Nanostructures Synthesis on the Semiconductors Surface. Journal of Achievements in Materials and Manufacturing Engineering, 92 (1–2), 19–28.10.5604/01.3001.0013.3184 Search in Google Scholar

41. Ananyev, M. V., Porotnikova, N. M., & Kurumchin, E. K. (2019). Influence of Strontium Content on the Oxygen Surface Exchange Kinetics and Oxygen Diffusion in La1–xSrxCoO3–δ Oxides. Solid State Ionics, 341, 115052. DOI: 10.1016/j. ssi.2019.115052 Search in Google Scholar

42. Osinkin, D.A., Khodimchuk, A.V., Porotnikova, N.M., Bogdanovich, N.M., Fetisov, A.V., & Ananyev, M.V. (2020). Rate-Determining Steps of Oxygen Surface Exchange Kinetics on Sr2Fe1.5Mo0.5O6−δ. Energies, 13, 250. DOI: 10.3390/en1301025010.3390/en13010250 Search in Google Scholar

43. Porotnikova, N. M., Vlasov, M. I., Zhukov, Y., Kirschfeld, C., Khodimchuk, A. V., Kurumchin, E. K., ..., & Ananyev, M. V. (2021). Correlation between Structure, Surface Defect Chemistry and 18O/16O Exchange for La2Mo2O9 and La2(MoO4)3. Physical Chemistry Chemical Physics, 23 (22), 12739–12748. DOI: 10.1039/D1CP00401H10.1039/D1CP00401H34041516 Search in Google Scholar

44. Hamalii, V. O., Peschanskii, A. V., Popov, A. I., & Krainyukova, N. V. (2020). Intrinsic Nanostructures on the (001) Surface of Strontium Titanate at Low Temperatures. Low Temperature Physics, 46 (12), 1170–1177. DOI: 10.1063/10.000247010.1063/10.0002470 Search in Google Scholar

45. Ostanina, T. N., Rudoi, V. M., Nikitin, V. S., Darintseva, A. B., Zalesova, O. L., & Porotnikova, N. M. (2016). Determination of the Surface of Dendritic Electrolytic Zinc Powders and Evaluation of its Fractal Dimension. Russian Journal of Non-Ferrous Metals, 57 (1), 47–51. DOI: 10.3103/S106782121601012010.3103/S1067821216010120 Search in Google Scholar

eISSN:
2255-8896
Lingua:
Inglese
Frequenza di pubblicazione:
6 volte all'anno
Argomenti della rivista:
Physics, Technical and Applied Physics