Accesso libero

Power Module Temperature in Simulation of Robotic Manufacturing Application

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Dassault Systems. (n.d.) Assembly Robot Programmer. Available at https://www.3ds.com/products-services/delmia/disciplines/industrial-engineering/ Search in Google Scholar

2. ABB, RobotStudio®. (n.d.). Available at https://new.abb.com/products/robotics/robotstudio Search in Google Scholar

3. KUKA AG. (n.d.). KUKA.Sim. Available at https://www.kuka.com/en-gb/products/robotics-systems/software/simulation-planning-optimization/kuka_sim Search in Google Scholar

4. Bormanis, O. (2015). Development of energy consumption model for virtual commissioning software. In 56th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), (pp. 1–4), 14 October 2015, Riga, Latvia.10.1109/RTUCON.2015.7343139 Search in Google Scholar

5. Corke, P. (n.d.). Robotics Toolbox for MATLAB. Available at https://petercorke.com/toolboxes/robotics-toolbox/ Search in Google Scholar

6. Corke, P. (n.d.). Robotics Toolbox 10 for MATLAB. Available at https://petercorke.com/download/27/rtb/1050/rtb-manual.pdf Search in Google Scholar

7. Hansen, C., Öltjen, J., Meike, D., & Ortmaier, T. (2012). Enhanced approach for energy-efficient trajectory generation of industrial robots. In 2012 IEEE International Conference on Automation Science and Engineering (CASE), (pp. 1 – 7), 20–24 August 2012, Seoul, Korea.10.1109/CoASE.2012.6386343 Search in Google Scholar

8. Sintamarean, C., Blaabjerg, F., Wang, H., & Iannuzzo, F. (2015). Reliability Oriented Design Tool for the New Generation of Grid Connected PV Inverters. IEEE Trans. Power Electron., 30 (5), 2635–2644.10.1109/TPEL.2014.2361918 Search in Google Scholar

9. Huang, H., & Mawby, P. A. (2013). A Lifetime Estimation Technique for Voltage Source Inverters. IEEE Trans. Power Electron., 28, (8), 4113–4119.10.1109/TPEL.2012.2229472 Search in Google Scholar

10. Ciappa, M. (2002). Selected Failure Mechanisms of Modern Power Modules. Microelectron. Reliab., 42, pp. 653–667.10.1016/S0026-2714(02)00042-2 Search in Google Scholar

11. Bayerer, R., Hermann, T., Licht, T, Lutz, J., & Feller, M. (2008). Model for power cycling lifetime of IGBT modules various factors influencing lifetime. In Proc. 5th Int. Conf. Integr. Power Electron. Syst., (pp. 1–6), 6–8 March 2008, Nuremberg, Germany. Search in Google Scholar

12. Scheuermann, U., & Hecht, U. (2002). Power cycling lifetime of advanced power modules for different temperature swings. In Proc. PCIM Nuremberg, (pp. 59–64), June 2002, Nuremberg, Germany. Search in Google Scholar

13. Lee, W. W., Nguyen, L. T., & Selvaduray, G. S. (2000). Solder Joint Fatigue Models: Review and Applicability to Chip Scale Packages. Microelectron. Reliab., 40, 231–244.10.1016/S0026-2714(99)00061-X Search in Google Scholar

eISSN:
2255-8896
Lingua:
Inglese
Frequenza di pubblicazione:
6 volte all'anno
Argomenti della rivista:
Physics, Technical and Applied Physics