Accesso libero

Challenges and Barriers by Transition Towards 4th Generation District Heating System: A Strategy to Establish a Pricing Mechanism

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Lund, H., Werner, S., Wiltshire, R., Svendsen, S., Thorsen, J., Hvelplund, F., & Mathiesen, B.V. (2014). 4th generation district heating (4GDH) integrating smart thermal grids into future sustainable energy systems. Energy, 68, 1–11, DOI: 10.1016/j.energy.2014.02.089.10.1016/j.energy.2014.02.089Open DOISearch in Google Scholar

2. Pieper, H., Ommen, T., Elmegaard, B., & Markussen, W.B. (2019). Assessment of a combination of three heat sources for heat pumps to supply district heating. Energy, 176, 156–170, DOI: 10.1016/j.energy.2019.03.165.10.1016/j.energy.2019.03.165Open DOISearch in Google Scholar

3. Hammer, A., Sejkora, C., & Kienberger, T. (2018). Increasing district heating networks efficiency by means of temperature-flexible operation. Sustainable Energy, Grids and Networks, 16, 393–404, DOI: 10.1016/j.segan.2018.11.001.10.1016/j.segan.2018.11.001Open DOISearch in Google Scholar

4. Werner, S. (2017). International review of district heating and cooling. Energy, 137, 617–631, DOI: 10.1016/j.energy.2017.04.045.10.1016/j.energy.2017.04.045Open DOISearch in Google Scholar

5. European Commission (2008). 3 Communication from the Commission to European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions – 20 20 by 2020: Europe’s climate change opportunity. European Commission,COM(2008),30 Final, 1–12.Search in Google Scholar

6. Eurostat (n.d.). Available at: http://ec.europa.eu/eurostat/statistics-explained/index.php/Energyconsumption_in_households#cite_note-1.Search in Google Scholar

7. Lund, H., Østergaard, P., Connolly, D., & Mathiesen, B.V. (2017). Smart energy and smart energy systems. Energy, 1–10, DOI: 10.1016/j.energy.2017.05.123.10.1016/j.energy.2017.05.123Open DOISearch in Google Scholar

8. European Parlament (2009). Directive 2009/72/EC of the European Parliament and of the Council of 13 July 2009 concerning common rules for the internal market in electricity and repealing Directive 2003/54/EC. Official Journal of the European Union, L 211/55, 55–93.Search in Google Scholar

9. European Comission (2016). An EU Strategy on Heating and Cooling. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, COM(2016), 51 Final, 1–13.Search in Google Scholar

10. Eurostat (2018). Energy balance sheets. 2016 data. Eurostat, 1–116.Search in Google Scholar

11. Rehman, H., Hirvonen, J., & Sirén, K. (2018). Performance comparison between optimized design of a centralized and semi-decentralized community size solar district heating system. Applied Energy, 229, 1072–1094, DOI: 10.1016/j.apenergy.2018.08.064.10.1016/j.apenergy.2018.08.064Open DOISearch in Google Scholar

12. Renaldi, R., & Friedrich, D. (2019). Techno-economic analysis of a solar district heating system with seasonal thermal storage in the UK. Energy Policy, 236, 388–400, DOI: 10.1016/j.apenergy.2018.11.030.10.1016/j.apenergy.2018.11.030Open DOISearch in Google Scholar

13. Pacot, P., & Reuter, S. (2011). Quality indicators for district heating networks. Available at: http://hdl.handle.net/2268/96467.Search in Google Scholar

14. Iddrisu I., & Bhattacharyya, S. (2015). Sustainable energy development index: A multi-dimensional indicator for measuring sustainable energy development. Renewable and Sustainable Energy Reviews, 50, 513–530, DOI: 10.1016/j.rser.2015.05.032.10.1016/j.rser.2015.05.032Open DOISearch in Google Scholar

15. Romanchenko, D., Odenberger, M., Göransson, L., & Johnsson F. (2017). Impact of electricity price fluctuations on the operation of district heating systems: A case study of district heating in Göteborg, Sweden. Applied Energy, 204, 16–30, DOI: 10.1016/j.apenergy.2017.06.092.10.1016/j.apenergy.2017.06.092Open DOISearch in Google Scholar

16. Ziemele, J., Vigants, G., Vitolins, V., Blumberga, D., & Veidenbergs, I. (2014A). District heating systems performance analyses. heat energy tariff. Environmental and Climate Technologies, 13, 32–43, DOI: 10.2478/rtuect-2014-0005.10.2478/rtuect-2014-0005Open DOISearch in Google Scholar

17. Büchele, R., Kranzl, L., & Hummel, M. (2018). What is the impact of the policy framework on the future of district heating in Eastern European countries? The case of Brasov. Energy Strategy Reviews, 19, 72–75, DOI: 10.1016/j.esr.2017.12.003.10.1016/j.esr.2017.12.003Open DOISearch in Google Scholar

18. Koirala, B., Koliou, E., Friege, J., Hakvoort, R., & Herder, P. (2016). Energetic communities for community energy: A review of key issues and trends shaping integrated community energy systems. Renewable and Sustainable Energy Reviews, 56, 722–744, DOI: 10.1016/j.rser.2015.11.080.10.1016/j.rser.2015.11.080Open DOISearch in Google Scholar

19. Hansen, C., Gudmundsson, O., & Detlefsen, N. (2019). Cost efficiency of district heating for low energy buildings of the future. Energy, 177, 77–86, DOI: 10.1016/j.energy.2019.04.046.10.1016/j.energy.2019.04.046Open DOISearch in Google Scholar

20. Turski, M., & Sekret, R., (2018). Buildings and a district heating network as thermal energy storages in the district heating system. Energy & Buildings, 179, 49–56, doi.org/10.1016/j.enbuild.2018.09.015.10.1016/j.enbuild.2018.09.015Open DOISearch in Google Scholar

21. Zhang, J., Ge, B., & Xu, H. (2013). An equivalent marginal cost-pricing model for the district heating market. Energy Policy, 63, 1224–1232, DOI: 10.1016/j.enpol.2013.09.017.10.1016/j.enpol.2013.09.017Open DOISearch in Google Scholar

22. Public Utilities Commission of Latvia (2010). Methodology for the Calculation of Thermal Energy Supply Service Tariffs. Decision No. 1/7 of the Board of the Public Utilities Commission.Search in Google Scholar

23. Central Statistical Bureau (2019). Available at: http://data1.csb.gov.lv/pxweb/lv/vide/vide__energetika__ikgad/?tablelist=trueSearch in Google Scholar

24. Tol, H.I., & Svendsen, S. (2015). Effects of boosting the supply temperature on pipe dimensions of low-energy district heating networks: A case study in Gladsaxe, Danmark. Energy and Buildings, 88, 324–334, DOI: 10.1016/j.enbuild.2014.10.067.10.1016/j.enbuild.2014.10.067Open DOISearch in Google Scholar

25. Dalla Rosa, A., & Christensen, J. (2011). Low-energy district heating in energy-efficient building areas. Energy, 36, 6890–6899, DOI: 10.1016/j.energy.2011.10.001.10.1016/j.energy.2011.10.001Open DOISearch in Google Scholar

26. Cai, H., You, S., Wang, J., Bindner, H.W., & Klyapovskiy, S. (2018). Technical assessment of electric heat boosters in low-temperature district heating based on combined heat and power analysis. Energy, 150, 938–949, DOI: 10.1016/j.energy.2018.02.084.10.1016/j.energy.2018.02.084Open DOISearch in Google Scholar

27. Dalla Rosa, A., Li, H., Svendsen, S., Werner, S., Persson, U., Ruehling, K., & Felsman, C. (2014). Toward 4th generation district heating: Experince and potential of low-temperature district heating. Germany: International Energy Agency.Search in Google Scholar

28. Averfalk, H., Werner, S., Felsmann, C., Rühling, K., Wiltshire, R., & Svendsen, S. (2017). Transformation roadmap from high to low temperature district heating systems. Annex XI final report. International Energy Agency.Search in Google Scholar

29. Li, H., & Wang, S.J. (2014). Challenges in smart low-temperature district heating development. Energy Procedia, 61, 1472–1475, DOI: 10.1016/j.egypro.2014.12.150.10.1016/j.egypro.2014.12.150Open DOISearch in Google Scholar

30. Okkonen, L., & Suhonen, N. (2010). Business models of heat entrepreneurship in Finland. Energy Policy, 38, 3443–3452, DOI: 10.1016/j.enpol.2010.02.018.10.1016/j.enpol.2010.02.018Open DOISearch in Google Scholar

31. Prando, D., Renzi, M., Gasparella, M., Gasparella, A., & Baratieri, M. (2015). Monitoring of the energy performance of a district heating CHP plant based on biomass boiler and ORC generator. Applied Thermal Engineering, 79, 98–107, DOI: 10.1016/j.applthermaleng.2014.12.063.10.1016/j.applthermaleng.2014.12.063Open DOISearch in Google Scholar

32. Madlener, R. (2007). Innovation diffusion, public policy, and local initiative: The case of wood-fuelled district heating systems in Austria. Energy Policy, 35, 1992–2008. DOI: 10.1016/j.enpol.2006.06.010.10.1016/j.enpol.2006.06.010Open DOISearch in Google Scholar

33. Ilic, D., & Trygg, L. (2014). Economic and environmental benefits of converting industrial processes to district heating. Energy Conversion and Management, 87, 305–317, DOI: 10.1016/j.enconman.2014.07.025.10.1016/j.enconman.2014.07.025Open DOISearch in Google Scholar

34. Paiho, S., & Saastamoinen, H. (2018). How to develop district heating in Finland? Energy Policy, 122, 668–676, DOI: 10.1016/j.enpol.2018.08.025.10.1016/j.enpol.2018.08.025Open DOISearch in Google Scholar

35. Sarma, U., & Bazbauers, G. (2016). District heating regulation: parameters for the benchmarking model. Energy Procedia, 95, 401–407, DOI: 10.1016/j.egypro.2016.09.046.10.1016/j.egypro.2016.09.046Open DOISearch in Google Scholar

36. Li, H., Sun, Q., Zhang, Q., & Wallin, F. (2015). A review of the pricing mechanisms for district heating systems. Renewable and Sustainable Energy Reviews, 42, 56–65, DOI: 10.1016/j.rser.2014.10.003.10.1016/j.rser.2014.10.003Open DOISearch in Google Scholar

37. Köfinger, M., Basciotti, D., Schmidt, R., Meissner, E., Doczekal, C., & Giovannini, A. (2016). Low temperature district heating in Austria: Energetic, ecologic and economic comparison of four case studies. Energy, 110, 95–104, DOI: 10.1016/j.energy.2015.12.103.10.1016/j.energy.2015.12.103Open DOISearch in Google Scholar

38. Zvingilaite, E., & Klinge Jacobsen, H. (2015). Heat savings and generation technologies:Modelling of residential investment behaviou with local health costs. Energy Policy, 77, 31–45, DOI: 10.1016/j.enpol.2014.11.032.10.1016/j.enpol.2014.11.032Open DOISearch in Google Scholar

39. Dalla Rosa, A., Boulter, R., Church, K., & Svendsen, S. (2012). District heating (DH) network design and operation toward a system-wide methodology for optimizing renewable energy solution (SMORES) in Canada: A case study. Energy, 45, 960–974, DOI: 10.1016/j.energy.2012.06.062.10.1016/j.energy.2012.06.062Open DOISearch in Google Scholar

eISSN:
0868-8257
Lingua:
Inglese
Frequenza di pubblicazione:
6 volte all'anno
Argomenti della rivista:
Physics, Technical and Applied Physics