Accesso libero

Study of the Processes of Near Identical, Nanoprene, Neuro Progenitor Electric Drive

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Fard Masoumi, H.R., Basri, M., Kassim, A., Kuang Abdullah, D., Abdollahi, Y., & Abd Gani, S.S. (2014). Comparison of estimation capabilities of the artificial neural network with the wavelet neural network in lipase-catalyzed synthesis of triethanolamine-based esterquats cationic surfactant. J Surfactants Deterg., 17(2), 287–294. doi: 10.1007/s11743-013-1539-0.10.1007/s11743-013-1539-0Open DOISearch in Google Scholar

2. Mao, W., Wang, W., Dou, Z., & Li, Y. (2018). Correction to: Fire recognition based on multi-channel convolutional neural network. Fire Technol. doi: 10.1007/s10694-018-0705-3.10.1007/s10694-018-0705-3Open DOISearch in Google Scholar

3. Ayhan, T., Karlik, B., & Tandiroglu, A. (2008). Flow geometry optimization of channels with baffles using neural network and second law of thermodynamics. Comput Mech., 42(3), 481. doi: 10.1007/s00466-006-0083-4.10.1007/s00466-006-0083-4Open DOISearch in Google Scholar

4. Yamada, T. (2009). Remarks on the tracking method of neural network weight change for a learning-type neural network feed-forward feed-back controller. Artif Life Robot., 14(3), 384. doi:10.1007/s10015-009-0690-1.10.1007/s10015-009-0690-1Open DOISearch in Google Scholar

5. Buyankin, V.M., Vasiliev, V.V., Tikhomirov, E.L., & Tochilina, N.S. (1983). Drive control in microprocessor systems. In Microprocessor Technology in CNC Machine Tools: Sat. Scientific Papers (pp. 43–51). Moscow: ENIMS.Search in Google Scholar

6. Posyagin, A.I., & Yuzhakov, A.A. (2013). Development of a two-layer neural network for a self-routing analog-to-digital converter based on a neural network. Russ Electr Eng., 84(11), 602–605. doi: 10.3103/S1068371213110114.10.3103/S1068371213110114Open DOISearch in Google Scholar

7. Lin, H-L., Chou, T., & Chou, C-P. (2007). Optimization of resistance spot welding process using taguchi method and a neural network. Exp Tech., 31(5), 30–36. doi:10.1111/j.1747-1567.2007.00186.x.10.1111/j.1747-1567.2007.00186.xOpen DOISearch in Google Scholar

8. Virili, F., & Freisleben, B. (2001). Neural network model selection for financial time series prediction. Comput Stat., 16(3), 451–463. doi: 10.1007/s001800100078.10.1007/s001800100078Search in Google Scholar

9. Liu, P., Shi, R., & Gao, W. (2018). Erratum to: Estimating leaf chlorophyll contents by combining multiple spectral indices with an artificial neural network. Earth Sci Informatics, 11(1), 157. doi: 10.1007/s12145-017-0325-3.10.1007/s12145-017-0325-3Open DOISearch in Google Scholar

10. Alkhasawneh, M.S., & Tay, L.T. (2017). A hybrid intelligent system integrating the cascade forward neural network with elman neural network. Arab J Sci Eng. doi: 10.1007/s13369-017-2833-3.10.1007/s13369-017-2833-3Search in Google Scholar

11. Wang, H., Lv, Y., Chen, H., Li, Y., Zhang, Y., & Lu, Z. (2018). Erratum to: Smart pathological brain detection system by predator-prey particle swarm optimization and single-hidden layer neural-network. Multimed Tools Appl., 77(3), 3887, doi: 10.1007/s11042-017-4391-9.10.1007/s11042-017-4391-9Open DOISearch in Google Scholar

12. Patra, J.C., Ang, E.L., Chaudhari, N.S., & Das, A. (2005). Neural-network-based smart sensor framework operating in a harsh environment. EURASIP J Adv Signal Process, 2005(4), 498294. doi:10.1155/ASP.2005.558.10.1155/ASP.2005.558Open DOISearch in Google Scholar

13. Shaltaf, S. (2004). Neural-network-based time-delay estimation. EURASIP J Adv Signal Process, 2004(3), 654087. doi: 10.1155/S1110865704309261.10.1155/S1110865704309261Search in Google Scholar

14. Nemmour, H., & Chibani, Y. (2005). Neural network combination by fuzzy integral for robust change detection in remotely sensed imagery. EURASIP J Adv Signal Process, 2005(14), 413784, doi:10.1155/ASP.2005.2187.10.1155/ASP.2005.2187Open DOISearch in Google Scholar

15. Dmitriev, A.S., Emelyanov, R.Y., Lazarev, V.A., & Chibisov, V.V. (2017). Simulation of dynamics of the neural ensemble in an active wireless network. J Commun Technol Electron, 62(10), 1148–1151. doi: 10.1134/S1064226917100035.10.1134/S1064226917100035Search in Google Scholar

16. Hartmann, C., Lazar, A., & Triesch, J. (2015). Key features of neural variability emerge from self-organized sequence learning in a deterministic neural network. BMC Neurosci., 16(1), 266. doi: 10.1186/1471-2202-16-S1-P266.10.1186/1471-2202-16-S1-266Open DOISearch in Google Scholar

17. Nugent, C.D., Lopez, J.A., Smith, A.E., & Black, N.D. (2002). Prediction models in the design of neural network based ECG classifiers: A neural network and genetic programming approach. BMC Med Inform Decis Mak., 2(1), 1. doi: 10.1186/1472-6947-2-1.10.1186/1472-6947-2-16552211846893Open DOISearch in Google Scholar

18. Rohit, S., & Chakravarthy, S. (2011). A convolutional neural network model of the neural responses of inferotemporal cortex to complex visual objects. BMC Neurosci., 12(1), 35. doi: 10.1186/1471-2202-12-S1-P35.10.1186/1471-2202-12-S1-35Open DOISearch in Google Scholar

19. Grasel, F.D.S., & Fontoura, L.A.M. (2016). Computacional study of the electronic effects in rotational barrier of the N-arilcarbamatos N-CO bond. Periodico Tche Quimica, 13(25), 7–15.10.52571/PTQ.v13.n25.2016.7_Periodico25_pgs_7_15.pdfSearch in Google Scholar

20. Buyankin, V.M., & Vasiliev, V.V. (1982). Digital servo drive with separate control reversing thyristor Converter. In Electric and Hydraulic Drive of CNC Machines and Industrial Robots: Sat. Scientific Papers (pp. 78–86). Moscow: ENIMS.Search in Google Scholar

eISSN:
0868-8257
Lingua:
Inglese
Frequenza di pubblicazione:
6 volte all'anno
Argomenti della rivista:
Physics, Technical and Applied Physics