[
Bernard, J. 2024 . What are word embeddings? IBM, available at: https://www.ibm.com/topics/word-embeddings
]Search in Google Scholar
[
Bondielli, A., Passaro, L. C., 2021. Sfruttare CLIP per il riconoscimento delle emozioni nelle immagini. In Cabrio, E., Croce, D., Passaro, L. C., Sprugnoli, R. (Eds.), Atti del Quinto Workshop su Linguaggio Naturale per l’Intelligenza Artificiale (NL4AI 2021) in concomitanza con la 20a Conferenza Internazionale dell’Associazione Italiana per l’Intelligenza Artificiale (AI*IA 2021), Evento online, 29 novembre 2021. CEUR Workshop Proceedings, 3015. CEUR-WS.org. available at: https://ceur-ws.org/Vol-3015/paper172.pdf
]Search in Google Scholar
[
Bustos, C., Civit, C., Du, B. et al., 2023. Sull’uso dei modelli Vision-Language per l’analisi del sentimento visuale: uno studio su CLIP. In 11a Conferenza Internazionale sull’Interazione Intelligente e l’Informatica Affettiva (ACII) (pp. 1-8). IEEE Computer Society. available at: https://doi.ieeecomputersociety.org/10.1109/ACII59096.2023.10388075
]Search in Google Scholar
[
Chakrabarty, T., Saakyan, A., Winn, O. et al., 2023. I spy a metaphor: Large language models and diffusion models co-create visual metaphors. arXiv preprint arXiv:2305.14724.
]Search in Google Scholar
[
Chen, M., Radford, A., Child, R. et al., 2020 . Preallenamento generativo dai pixel. In III, H. Daumé & Singh, A. (Eds.), Atti della 37a Conferenza Internazionale sull’Apprendimento Automatico (pp. 1691-1703). PMLR. available at: https://proceedings.mlr.press/v119/chen20s.html
]Search in Google Scholar
[
Eco, U. 1984 . Semiotica e filosofia del linguaggio, Einaudi, Torino.
]Search in Google Scholar
[
Fernández Gambín, A., Yazidi, A., Vasilakos, A. et al., 2024. Deepfakes: current and future trends. Artificial Intelligence Review, 57:64.
]Search in Google Scholar
[
Garrido-Muñoz, I., Montejo-Ráez, A., Martínez-Santiago, F., Ureña-López, L. A. 2021 . A survey on bias in deep NLP. Applied Sciences, 11(7), 3184.
]Search in Google Scholar
[
Groupe μ (1970). Rhétorique générale, Larousse, Paris (trad. it. Retorica generale, Bopiani, Milano 1976; II ediz. 1980)
]Search in Google Scholar
[
Groupe μ 1992 . Traité du signe visuel. Seuil, Paris.
]Search in Google Scholar
[
Ho, J., Jain, A., Abbeel, P. 2020 . Denoising diffusion probabilistic models. Advances in neural information processing systems, 33, 6840-6851.
]Search in Google Scholar
[
Kaur, D., Kaur, Y. 2014 . Various image segmentation techniques: a review. International Journal of Computer Science and Mobile Computing, 3(5), 809-814.
]Search in Google Scholar
[
Lakoff, G., Johnson, M. 1980 . Metaphors we live by, The University of Chicago Press, Chicago (trad. it. Metafora e vita quotidiana, Bompiani, Milano 1998). LeCun, Y., Bengio, Y., Hinton, G. 2015 . Deep learning. nature, 521(7553), 436-444.
]Search in Google Scholar
[
Prystawski, B., Thibodeau, P., Potts, C. et al., 2022. Psychologically-informed chain-of-thought prompts for metaphor understanding in large language models. arXiv preprint arXiv:2209.08141.
]Search in Google Scholar
[
Ramesh, A., Dhariwal, P., Nichol, A., et al., 2022. Generazione di immagini gerarchica condizionata al testo con latenti CLIP. ArXiv, cs.CV. available at: https://arxiv.org/abs/2204.06125
]Search in Google Scholar
[
Rombach, R., Blattmann, A., Lorenz, D. et al., 2022 . Sintesi di immagini ad alta risoluzione con modelli di diffusione latenti. ArXiv, cs.CV. available at: https://arxiv.org/abs/2112.10752
]Search in Google Scholar
[
Sonesson, G. 1989 . Pictorial concepts, Lund University Press, Lund.
]Search in Google Scholar
[
Tong, X., Choenni, R., Lewis, M. et al., 2024. Dataset di sfida per la comprensione delle metafore per i modelli di linguaggio di grandi dimensioni. ArXiv, cs.CL. available at: https://arxiv.org/abs/2403.11810
]Search in Google Scholar
[
Yakura, H. 2023 . Evaluating large language models’ ability to understand metaphor and sarcasm using a screening test for Asperger syndrome. arXiv preprint arXiv:2309.10744.
]Search in Google Scholar
[
Zoph, B., Raffel, C., Schuurmans, D. et al., 2022 . Abilità emergenti dei grandi modelli di linguaggio. TMLR.
]Search in Google Scholar