Accesso libero

Comparative investigation on the influence of metakaolin, metaillite and steel slag as SCMs in mortar on the corrosion behavior of embedded steel

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Vollpracht, A.; Lothenbach, B.; Snellings, R.; Haufe, J. The pore solution of blended cements: a review. Mater Struct 2016, 49, 3341–3367, doi: 10.1617/s11527-015-0724-1.Search in Google Scholar

2. Vetter, K.J. Dicke und Aufbau von passivierenden Oxydschichten auf Eisen. Zeitschrift für Elektrochemie 1957, 642–648.Search in Google Scholar

3. Andrade, C.; Merino, P.; Nóvoa, X.R.; Pérez, M.C.; Soler, L. Passivation of Reinforcing Steel in Concrete. In Electrochemical methods in corrosion research V, Proceedings of the 5th international symposium held in Sesimbra, Portugal, September 5 - 8, 1994. Electrochemical Methods in Corrosion Research V; Ferreira, M.G.S., Ed.; Trans Tech Publ: Aedermannsdorf, 1995; pp 891–898, ISBN 978-0-87849-702-7.Search in Google Scholar

4. Kaesche, H. Die Korrosion der Metalle: Physikalisch-chemische Prinzipien und aktuelle Probleme, 3., neubearb. und erw. Aufl., Nachdr. 2011 in veränd. Ausstattung; Springer: Heidelberg, 2011, ISBN 978-3-642-18427-7.Search in Google Scholar

5. Glasser, F.P.; Sagoe-Crentsil, K.K. Steel in concrete: Part II Electron microscopy analysis. Magazine of Concrete Research 1989, 41, 213–220, doi: 10.1680/macr.1989.41. 149.213.Search in Google Scholar

6. Ghods, P.; Isgor, O.B.; Brown, J.R.; Bensebaa, F.; Kingston, D. XPS depth profiling study on the passive oxide film of carbon steel in saturated calcium hydroxide solution and the effect of chloride on the film properties. Applied Surface Science 2011, 257, 4669–4677, doi: 10.1016/j.apsusc.2010. 12.120.Search in Google Scholar

7. Freire, L.; Nóvoa, X.R.; Montemor, M.F.; Carmezim, M.J. Study of passive films formed on mild steel in alkaline media by the application of anodic potentials. Materials Chemistry and Physics 2009, 114, 962–972, doi: 10.1016/j. matchemphys.2008.11.012.Search in Google Scholar

8. Haupt, S.; Strehblow, H.-H. Combined electrochemical and surface analytical investigations of the formation of passive layers. Corrosion Science 1989, 29, 163–182, doi: 10.1016/ 0010-938X(89)90027-9.Search in Google Scholar

9. Elsener, B.; Andrade, C.; Gulikers, J.; Polder, R.; Raupach, M. Recommendations of RILEM TC 154-EMC: Electrochemical techniques for measuring metallic corrosion Half-cell potential measurements – Potential mapping on reinforced concrete structures. Mater Struct 2003, 36, 461–471, doi: 10.1617/13718.Search in Google Scholar

10. Stratfull, R.F. Half-Cell Potentials and the Corrosion of Steel in Concrete. In Corrosion, concrete and quality control. 51st Annual Meeting of the Highway Research Board, Washington District of Columbia, United States, 22.-26.01.1973; Highway Research Board National Research Council: Washington, DC, 1973; pp 12–21, ISBN 0309021634.Search in Google Scholar

11. Poursaee, A.; Hansson, C.M. Reinforcing steel passivation in mortar and pore solution. Cement and Concrete Research 2007, 37, 1127–1133, doi: 10.1016/j.cemconres. 2007.04.005.Search in Google Scholar

12. Lothenbach, B.; Winnefeld, F. Thermodynamic modelling of the hydration of Portland cement. Cement and Concrete Research 2006, 36, 209–226, doi: 10.1016/j.cemconres. 2005.03.001.Search in Google Scholar

13. Angst, U.; Elsener, B.; Larsen, C.K.; Vennesland, Ø. Critical chloride content in reinforced concrete – A review. Cement and Concrete Research 2009, 39, 1122–1138, doi: 10.1016/j.cemconres.2009.08.006.Search in Google Scholar

14. Bertolini, L.; Elsener, B.; Pedeferri, P.; Polder, R. Corrosion of steel in concrete: Prevention, diagnosis, repair, 1. reprint; Wiley-VCH: Weinheim, 2005, ISBN 3-527-30800-8.Search in Google Scholar

15. Hausmann, D.A. A Probality Model of Steel Corrosion in Conrete. Materials Selection and Design 1998, 64–68.Search in Google Scholar

16. Goñi, S.; Andrade, C. Synthetic concrete pore solution chemistry and rebar corrosion rate in the presence of chlorides. Cement and Concrete Research 1990, 20, 525–539, doi: 10.1016/0008-8846(90)90097-H.Search in Google Scholar

17. Lambert, P.; PAGE, C.L.; Vassie, P.R.W. Investigations of reinforcement corrosion. 2. Electrochemical monitoring of steel in chloride-contaminated concrete. Mater Struct 1991, 24, 351–358, doi: 10.1007/BF02472068.Search in Google Scholar

18. Zhang, J. Study on Mechanical Properties of Metakaolin-Based Concretes and Corrosion of Carbon Steel Reinforcement in 3.5% NaCl. Int. J. Electrochem. Sci. (International Journal of Electrochemical Science) 2020, 2883–2893, doi: 10.20964/2020.04.25.Search in Google Scholar

19. Li, C.; Xiao, K. Chloride threshold, modelling of corrosion rate and pore structure of concrete with metakaolin addition. Construction and Building Materials 2021, 305, 124666, doi:10.1016/j.conbuildmat.2021.124666.Search in Google Scholar

20. Güneyisi, E.; Gesoglu, M.; Karaboga, F.; Mermerdas, K. Corrosion behavior of reinforcing steel embedded in chloride contaminated concretes with and without metakaolin. Composites Part B: Engineering 2013, 45, 1288–1295, doi: 10.1016/j.compositesb.2012.09.085.Search in Google Scholar

21. Parande, A.K.; Ramesh Babu, B.; Aswin Karthik, M.; Deepak Kumaar, K.K.; Palaniswamy, N. Study on strength and corrosion performance for steel embedded in metakaolin blended concrete/mortar. Construction and Building Materials 2008, 22, 127–134, doi: 10.1016/j.conbuildmat. 2006.10.003.Search in Google Scholar

22. Triana, V.; Lizarazo-Marriaga, J.; Flórez, J.O. Steel corrosion assessment by electrochemical impedance on metakaolin blended mortars. Mat. Res. 2013, 16, 1457–1464, doi: 10.1590/S1516-14392013005000178.Search in Google Scholar

23. Batis, G.; Pantazopoulou, P.; Tsivilis, S.; Badogiannis, E. The effect of metakaolin on the corrosion behavior of cement mortars. Cement and Concrete Composites 2005, 27, 125–130, doi: 10.1016/j.cemconcomp.2004.02.041.Search in Google Scholar

24. Ghanem, W.A.; Ghayad, I.M.; Gaber, G.A. Corrosion behavior of reinforcing steel in cement partially replaced with metakaolin in 3.5% NaCl and 5% MgSO4 solution. International Journal of Metallurgical & Materials Science and Engineering (IJMMSE), Dec. 2013, 1–8.Search in Google Scholar

25. Homayoonmehr, R.; Ramezanianpour, A.A.; Mirdarsoltany, M. Influence of metakaolin on fresh properties, mechanical properties and corrosion resistance of concrete and its sustainability issues: A review. Journal of Building Engineering 2021, 44, 103011, doi: 10.1016/j.jobe.2021.103011.Search in Google Scholar

26. Borade, A.N.; Kondraivendhan, B. Corrosion behavior of reinforced concrete blended with metakaolin and slag in chloride environment. Journal of Sustainable Cement-Based Materials 2019, 8, 367–386, doi: 10.1080/21650373. 2019.1566934.Search in Google Scholar

27. PAGE, C.L.; Lambert, P.; Vassie, P.R.W. Investigations of reinforcement corrosion. 1. The pore electrolyte phase in chloride-contaminated concrete. Mater Struct 1991, 24, 243–252, doi: 10.1007/BF02472078.Search in Google Scholar

28. Kraft, B.; Achenbach, R.; Ludwig, H.-M.; Raupach, M. Hydration and Carbonation of Alternative Binders. CMD 2022, 3, 19–52, doi: 10.3390/cmd3010003.Search in Google Scholar

29. Deutsches Institut für Normgebung. Prüfverfahren für Zement: Teil 1: Bestimmung der Festigkeit; Beuth Verlag GmbH: Berlin, 2016, 91.100.10 Zement. Gips. Kalk. Mörte (DIN EN 196-1).Search in Google Scholar

30. Andrade, C.; Soler, L.; Nóvoa, X.R. Advances in Electrochemical Impedance Measurements in Reinforced Concrete. MSF 1995, 192-194, 843–856, doi: 10.4028/www. scientific.net/MSF.192-194.843.Search in Google Scholar

31. Orazem, M.E.; Tribollet, B. Electrochemical impedance spectroscopy; Wiley: Hoboken, NJ, 2008, ISBN 978-0-470-04140-6.Search in Google Scholar

32. Ghods, P.; Isgor, O.B.; McRae, G.; Miller, T. The effect of concrete pore solution composition on the quality of passive oxide films on black steel reinforcement. Cement and Concrete Composites 2009, 31, 2–11, doi: 10.1016/j. cemconcomp.2008.10.003.Search in Google Scholar

33. Feliu, V.; González, J.A.; Adrade, C.; Feliu, S. Equivalent circuit for modelling the steel-concrete interface. II. Complications in applying the stern-geary equation to corrosion rate determinations. Corrosion Science 1998, 40, 995–1006, doi: 10.1016/S0010-938X(98)00037-7.Search in Google Scholar

34. Sánchez, M.; Gregori, J.; Alonso, C.; García-Jareño, J.J.; Takenouti, H.; Vicente, F. Electrochemical impedance spectroscopy for studying passive layers on steel rebars immersed in alkaline solutions simulating concrete pores. Electrochimica Acta 2007, 52, 7634–7641, doi: 10.1016/j. electacta.2007.02.012.Search in Google Scholar

35. Cai, Y.; Zheng, H.; Hu, X.; Lu, J.; Poon, C.S.; Li, W. Comparative studies on passivation and corrosion behaviors of two types of steel bars in simulated concrete pore solution. Construction and Building Materials 2021, 266, 120971, doi: 10.1016/j.conbuildmat.2020.120971.Search in Google Scholar

36. Flis, J.; Zakroczymski, T. Impedance Study of Reinforcing Steel in Simulated Pore Solution with Tannin. J. Electrochem. Soc. 1996, 143, 2458, doi: 10.1149/1.1837031.Search in Google Scholar

37. Volpi, E.; Olietti, A.; Stefanoni, M.; Trasatti, S.P. Electrochemical characterization of mild steel in alkaline solutions simulating concrete environment. Journal of Electro-analytical Chemistry 2015, 736, 38–46, doi: 10.1016/j. jelechem.2014.10.023.Search in Google Scholar

38. Andrade, C. Propagation of reinforcement corrosion: principles, testing and modelling. Mater Struct 2019, 52, 1–26, doi: 10.1617/s11527-018-1301-1.Search in Google Scholar

39. Barsoukov, E.; Macdonald, J.R. Impedance Spectroscopy: Theory, Experiment, and Applications.Search in Google Scholar

40. Urquidi-Macdonald, M.; Real, S.; Macdonald, D.D. Application of Kramers-Kronig Transforms in the Analysis of Electrochemical Impedance Data: II . Transformations in the Complex Plane. J. Electrochem. Soc. 1986, 133, 2018–2024, doi: 10.1149/1.2108332.Search in Google Scholar

41. Duffó, G.S.; Farina, S.B. Electrochemical behaviour of steel in mortar and in simulated pore solutions: Analogies and differences. Cement and Concrete Research 2016, 88, 211–216, doi: 10.1016/j.cemconres.2016.07.007.Search in Google Scholar

eISSN:
1804-1213
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Chemical Engineering, Materials Sciences, Ceramics and Glass