Evolution of the dicalcium phosphate-dihydrate (DCPD) coating created by large amplitude sinusoidal voltammetry (LASV) on corrosion resistance of the ZW3 magnesium alloy in chloride containing environment
Pubblicato online: 16 feb 2018
Pagine: 14 - 18
DOI: https://doi.org/10.2478/kom-2018-0003
Parole chiave
© 2018 Kajánek D. et al., published by De Gruyter Open
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
The contribution is focused on the preparation of coating based on the dicalcium phosphate-dihydrate (DCPD) on the surface of ZW3 magnesium alloy. For the preparation of the coating a cathodic electrodeposition technique called Large Amplitude Sinusoidal Voltammetry (LASV) was used. The DCPD layer was prepared at the temperature of 22 ± 2 °C in electrolyte composed of 0.1M Ca(NO3).4H2O, 0.06 M NH4H2PO4 and H2O2. Electrochemical characteristics were evaluated by electrochemical impedance spectroscopy (EIS) in 0.1M NaCl solution. The obtained data in form of Nyquist plots were analysed by the equivalent circuit method. It is clear from the measured values of polarization resistance Rp that dicalcium phosphate-dihydrate (DCPD) layer prepared by LASV electro-deposition technique improved corrosion resistance of ZW3 alloy in the chosen environment.