Accesso libero

Characterisation of the Electromagnetic Properties of Flower Leaves for 2.45 Ghz ISM Band Biodegradable Electronics Applications

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Bonefeld-Dahl C., Mine H., Europe 2030: A Digital Powerhouse. DIGITALEUROPE’s manifesto for the next Commission. 07 NOV 2023. Available from: https://www.digitaleurope.org/resources/europe-2030-a-digital-powerhousedigitaleuropes-manifesto-for-the-next-commission/ Search in Google Scholar

Baldé C.P., Kuehr R., Yamamoto T., McDonald R., D’Angelo E., Althaf S., Bel G., Deubzer O., Fernandez-Cubillo E., Forti V., Gray V., Herat S., Honda s., Iattoni G., Khetriwal D.S., Luda di Cortemiglia V., Lobuntsova Y., Nnorom I, Pralat N., Wagner M. Global E-waste Monitor 2024. International Telecommunication Union (ITU) and United Nations Institute for Training and Research (UNITAR). 2024. Geneva/Bonn. Available from: https://www.itu.int/en/ITU-D/Environment/Pages/Publications/The-Global-E-waste-Monitor-2024.aspx Search in Google Scholar

Addisalem B., Soma T, Fraser E. Digital agricultural technologies for food loss and waste prevention and reduction: Global trends, adoption opportunities and barriers. Journal of Cleaner Production, 29 September 2021, Volume 323, 2021, 129099, ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2021.129099. Search in Google Scholar

Stan E.S., Oprean-Stan C., Țîțu A.M. DIGITALIZATION – SUSTAINABLE DEVELOPMENT CONVERGENCE: METRICS AND EFFECTS IN ROMANIA. Management of Sustainable Development, Lucian Blaga University of Sibiu, Romania, vol. 12(1), June 2020, pages 10-16, DOI: https://doi.org/10.54989/msd-2020-0002 Search in Google Scholar

EU employment: use of digital devices. Eurostat. 27 June 2023. Available from: https://ec.europa.eu/eurostat/web/products-eurostat-news/w/ddn-20230627-1 Search in Google Scholar

Di Mauro, E., Rho, D. & Santato, C. Biodegradation of bio-sourced and synthetic organic electronic materials towards green organic electronics. Nat Commun 12, 3167 (2021). https://doi.org/10.1038/s41467-021-23227-4 Search in Google Scholar

Hao Wu, Zefeng Chen, Guoqiang Xu, Jianbin Xu, Zuankai Wang, Yunlong Zi. Fully Biodegradable Water Droplet Energy Harvester Based on Leaves of Living Plants. ACS Applied Materials & Interfaces. Volume 12 (50), pp. 56060-56067, 2020. Search in Google Scholar

Kequan Xia, Zhiyuan Zhu, Jiangming Fu, Yueming Li, Yue Chi, Hongze Zhang, Chaolin Du, Zhiwei Xu, A triboelectric nanogenerator based on waste tea leaves and packaging bags for powering electronic office supplies and behavior monitoring, Nano Energy, Volume 60, 2019, Pages 61-71, ISSN 2211-2855 Search in Google Scholar

Gao X., Huang L., Wang B., Xu D., Zhong J., Hu Z., Zhang L., Zhou J. Natural materials assembled, biodegradable, and transparent paper-based electret nanogenerator. ACS Appl. Mater. Interfaces, Volume 8 (2016), pp. 35587-35592 Search in Google Scholar

Zhenlong Li, JiaJia Yin, Yang Yu, Yuan Ji, Yundan Liu, Xiang Qi, A biodegradable wearable flexible sensor based on natural wheat flour polymer for human motion and sweat monitoring, Ceramics International, Volume 49, Issue 13, 2023, pp. 22062-22067, ISSN 0272-8842, DOI: https://doi.org/10.1016/j.ceramint.2023.04.032 Search in Google Scholar

Al-Sehemi A., Al-Ghamdi A., Dishovsky N., Atanasova G., Atanasov N. A Flexible Multiband Antenna for Biomedical Telemetry, IETE Journal of Research, 25 Aug 2020. Search in Google Scholar

de Cos Gómez, M.E.; Fernández Álvarez, H.; Flórez Berdasco, A.; Las-Heras Andrés, F. Paving the Way to Eco-Friendly IoT Antennas: Tencel-Based Ultra-Thin Compact Monopole and Its Applications to ZigBee. Sensors 2020, 20, 3658. Search in Google Scholar

Pérez-Campos, R.; Fayos-Fernández, J.; Lozano-Guerrero, A.J.; Martínez-González, A.; Monzó-Cabrera, J.; Mediavilla, I.; Peña-Carro, D.; Esteban-Pascual, L.S. Permittivity Measurements for Cypress and Rockrose Biomass Versus Temperature, Density, and Moisture Content. Sensors 2020, 20, 4684. https://doi.org/10.3390/s20174684 Search in Google Scholar

Kraszewski, A. W., Nelson, S. O. Microwave Permittivity Determination in Agricultural Products. Journal of Microwave Power and Electromagnetic Energy, 39(1), pp. 41–52, 2004. https://doi.org/10.1080/08327823.2004.11688507 Search in Google Scholar

Metaxas A. C., Meredith R. J., Industrial microwave heating, London, United Kingdom: The Institution of Engineering and Technology, 2008. Search in Google Scholar

Atnasova, G.L.; Atanasov, N.T. Impact of electromagnetic properties of textile materials on performance of a low-profile wearable antenna backed by a reflector. In Proceedings of the 2020 International Workshop on Antenna Technology (iWAT), Bucharest, Romania, 25–28 February 2020. Search in Google Scholar

Sârbu, A.; Miclăuș, S.; Digulescu, A.; Bechet, P. Comparative Analysis of User Exposure to the Electromagnetic Radiation Emitted by the Fourth and Fifth Generations of Wi-Fi Communication Devices. Int. J. Environ. Res. Public Health 2020, 17, 8837. https://doi.org/10.3390/ijerph17238837 Search in Google Scholar

Baker-Jarvis J., Janezic M. D., Degroot D. C., High-frequency dielectric measurements. IEEE Instrumentation & Measurement Magazine, vol. 13, no. 2, pp. 24-31, April 2010 Search in Google Scholar

Saura-Mas S, Lloret F. Leaf and shoot water content and leaf dry matter content of Mediterranean woody species with different post-fire regenerative strategies. Ann Bot. 2007 Mar. 99(3):545-54. Search in Google Scholar

Balanis, C. A., Modern antenna handbook, Danver, USA: John Wiley & Sons, Inc., 2008. International Conference KNOWLEDGE-BASED ORGANIZATION Vol. XXX No 3 2024 Search in Google Scholar