INFORMAZIONI SU QUESTO ARTICOLO

Cita

F. Qu, Z. Wang, L. Yang, and Z. Wu, ‘‘A journey toward modeling and resolving Doppler in underwater acoustic communications,’’ IEEE Commun. Mag., vol. 54, no. 2, pp. 49–55, Feb. 2016. Search in Google Scholar

M. Stojanovic and P. Beaujean, ‘‘Acoustic communication,’’ in Springer Handbook of Ocean Engineering, M. R. Dhanak and N. I. Xiros, Ed. New York, NY, USA: Springer, 2016, pp. 359–383. Search in Google Scholar

T. Melodia, H. Kulhandjian, and E. Demirors, ‘‘Advances in underwater acoustic networking,’’ in Mobile Ad-Hoc Networking: Cutting Edge Directions, 2nd ed. S. Basagni, M. Conti, S. Giordano, and I. Stojmenovic, Ed. Hoboken, NJ, USA: Wiley, 2013, pp. 504–854. Search in Google Scholar

M. Stojanovic and J. Preisig, ‘‘Underwater acoustic communication channels: Propagation models and statistical characterization,’’ IEEE Commun. Mag., vol. 47, no. 1, pp. 84–89, Jan. 2009. Search in Google Scholar

C. R. Berger, S. Zhou, J. C. Preisig, and P. Willett, ‘‘Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing,’’ IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1708–1721, Mar. 2010. Search in Google Scholar

S.-U. Kim, H.-S. Cheon, S.-B. Seo, S.-M. Song, and S.-Y. Park, ‘‘A hexagon tessellation approach for the transmission energy efficiency in underwater wireless sensor networks,’’ J. Inf. Process. Syst., vol. 6, no. 1, pp. 53–66, Mar. 2010. Search in Google Scholar

M. Stojanovic, ‘‘on the design of underwater acoustic cellular systems,’’ in Proc. OCEANS, Aberdeen, U.K., Jun. 2007, pp. 1–6. Search in Google Scholar

B. Sirinivasan, ‘‘Capacity of underwater acoustic OFDM cellular networks,’’ M.S. thesis, Dept. Comput. Sci. Eng., Univ. California, Santa Barbara, CA, USA, 2008. Search in Google Scholar

I. Ahmad, Z. Kaleem, and K. H. Chang, ‘‘Block error rate and UE throughput performance evaluation using LLS and SLS in 3GPP LTE downlink,’’ in Proc. Korean Inst. Commun. Inf. Sci., Daegwallyeong-myeon, South Korea: Yongpyong Resort, Feb. 2013, pp. 512–516. Search in Google Scholar

C. Mehlfuhrer, J. C. Ikuno, S. Šhwarz, S. Schwarz, M. Wrulich, and M. Rupp, ‘‘The Vienna LTE simulators— Enabling reproducibility in wireless communications research,’’ EURASIP J. Adv. Signal Process., vol. 2011, no. 29, pp. 1–14, Jan. 2011. Search in Google Scholar

C. Mehlführe, M. Wrulich, J. C. Ikuno, D. Bosanska, and M. Rupp, ‘‘Simulating the long term evolution physical layer,’’ in Proc. Eur. Signal Process. Conf., Glasgow, U.K., Aug. 2009, pp. 1471–1478. Search in Google Scholar

W. Chen, I. Ahmad, and K. Chang, ‘‘Co-channel interference management using eICIC/FeICIC with coordinated scheduling for the coexistence of PS-LTE and LTE-R networks,’’ EURASIP J. Wireless Commun., vol. 2017, p. 34, Dec. 2017. [Online]. Available: https://jwcneurasipjournals.springeropen.com/articles/10.1186/s13638-017-0822-6 Search in Google Scholar

R. B. Santos, W. C. Freitas, Jr., E. M. Stancanelli, and F. R. Cavalcanti, ‘‘Link-to-system level interface solutions in multistate channels for 3gpp lte wireless system,’’ in Proc. Simposio Brasileiro Telecommun., Sªo Pedro, Brazil, Dec. 2007, pp. 1–6. Search in Google Scholar

S.-U. Kim, H.-S. Cheon, S.-B. Seo, S.-M. Song, and S.-Y. Park, ‘‘A hexagon tessellation approach for the transmission energy efficiency in underwater wireless sensor networks,’’ J. Inf. Process. Syst., vol. 6, no. 1, pp. 53– 66, Mar. 2010, doi: 10.3745/JIPS.2010.6.1.053. Search in Google Scholar

M. Stojanovic, ‘‘On the design of underwater acoustic cellular systems,’’ in Proc. OCEANS, Aberdeen, U.K., Jun. 2007, pp. 1–6, doi: 10.1109/ OCEANSE.2007.4302226. Search in Google Scholar

B. Sirinivasan, ‘‘Capacity of underwater acoustic OFDM cellular networks,’’ M.S. Thesis, Univ. California, Santa Barbara, Santa Barbara, CA, USA, 2008, doi: 10.1109/OCEANSSYD.2010.5603911. Search in Google Scholar

I. Ahmad and K. Chang, ‘‘Effective SNR mapping and link adaptation strategy for next-generation underwater acoustic communications networks: A cross-layer approach,’’ IEEE Access, vol. 7, pp. 44150–44164,2019, doi: 10.1109/ACCESS.2019.2908018. Search in Google Scholar

Y. Wang, H. Zhang, Z. Sang, L. Xu, C. Cao, and T. A. Gulliver, ‘‘Modulation classification of underwater communication with deep learning network,’’ Comput. Intell. Neurosci., vol. 2019, pp. 1–12, Apr. 2019, doi: 10.1155/2019/8039632. Search in Google Scholar

Onedrive Link for Dataset. [Online]. Available: https://1drv.ms/u/s!AswxJeiLN4eNjxEgvdcXN06Pna4S?e=Nc7b6c and https://ieee-dataport.org/documents/taean-and-incheonmeasured-data, doi: 10.21227/4x41-7146. Search in Google Scholar

I. F. Akyildiz, D. Pompili, and T. Melodia, ‘‘Underwater acoustic sensor networks: Research challenges,’’ Ad Hoc Netw., vol. 5, no. 3, pp. 257–279, May 2005. Search in Google Scholar

R. Headrick and L. Freitag, ‘‘Growth of underwater communication technology in the U.S. Navy,’’ IEEE Commun. Mag., vol. 47, no. 1, pp. 80–82, Jan. 2009. Search in Google Scholar

N. Li, J.-F. Martínez, J. M. M. Chaus, and M. Eckert, ‘‘A survey on underwater acoustic sensor network routing protocols,’’ Sensors, vol. 16, no. 3, p. 414, Mar. 2016. Search in Google Scholar

P. C. Etter, ‘‘Underwater Acoustic Modeling and Simulation, 4th ed. Boca Raton, FL, USA: CRC Press, 2013. Search in Google Scholar

Y. Noh et al., ‘‘DOTS: A propagation delay-aware opportunistic MAC protocol for mobile underwater networks,’’ IEEE Trans. Mobile Comput., vol. 13, no. 4, pp. 766–782, Apr. 2014. Search in Google Scholar

T. Ebihara and K. Mizutani, ‘‘Underwater acoustic communication with an orthogonal signal division multiplexing scheme in doubly spread channels,’’ IEEE J. Ocean. Eng., vol. 39, no. 1, pp. 47–58, Jan. 2014. Search in Google Scholar

K. Chen, M. Ma, E. Cheng, F. Yuan, and W. Su, ‘‘A survey on MAC protocols for underwater wireless sensor networks,’’ IEEE Commun. Surv. Tuts., vol. 16, no. 3, pp. 1433–1447, Mar. 2014. Search in Google Scholar

M. Hayajneh, I. Khalil, and Y. Gadallah, ‘‘An OFDMA-based MAC protocol for under water acoustic wireless sensor networks,’’ in Proc. Int. Conf. Wireless Commun. Mobile Comput., Connecting World Wirelessly, Leipzig, Germany, Jun. 2009, pp. 810–814. Search in Google Scholar

I. M. Khalil, Y. Gadallah, M. Hayajneh, and A. Khreishah, ‘‘An adaptive OFDMA-based MAC protocol for underwater acoustic wireless sensor networks,’’ Sensors, vol. 12, no. 7, pp. 8782–8805, Jun. 2012. Search in Google Scholar

J.-W. Lee and H.-S. Cho, ‘‘Cascading multi-hop reservation and transmission in underwater acoustic sensor networks,’’ Sensors, vol. 14, no. 10, pp. 18390–18409, Oct. 2014. Search in Google Scholar

H.-H. Ng, W.-S. Soh, and M. Motani, ‘‘MACA-U: A media access protocol for underwater acoustic networks,’’ in Proc. IEEE GLOBECOM, New Orleans, LO, USA, Dec. 2008, pp. 1–5. Search in Google Scholar

P. Karn, ‘‘MACA-a new channel access method for packet radio,’’ in Proc. ARRL/CRRL Amateur Radio Comput. Netw. Conf., London, ON, Canada, Sep. 1990, pp. 134–140. Search in Google Scholar

J.-P. Kim, J.-W. Lee, Y.-S. Jang, K. Son, and H.-S. Cho, ‘‘A CDMA-based MAC protocol in tree-topology for underwater acoustic sensor networks,’’ in Proc. Int. Conf. Adv. Inf. Netw. Appl. Workshops, Bradford, U.K., May 2009, pp. 1166–1171. Search in Google Scholar

D. Pompili, T. Melodia, and I. F. Akyildiz, ‘‘A CDMA-based medium access control for underwater acoustic sensor networks,’’ IEEE Trans. Wireless Commun., vol. 8, no. 4, pp. 1899–1909, Apr. 2009. Search in Google Scholar

P. Casari, B. Tomasi, and M. Zorzi, ‘‘A comparison between the Tone-Lohi and Slotted FAMA MAC protocols for underwater networks,’’ in Proc. IEEE OCEANS, Quebec City, QC, Canada, Sep. 2008, pp. 1–8. Search in Google Scholar

R. Santos et al., ‘‘Scheduling real-time traffic in underwater acoustic wireless sensor networks,’’ in Ubiquitous Computing and Ambient Intelligence. Gran Canaria, Spain: Springer, Nov. 2016, pp. 150–162. Search in Google Scholar

H. Yan, Z. J. Shi, and J.-H. Cui, ‘‘DBR: Depth-based routing for underwater sensor networks,’’ in Proc. Int. Conf. Res. Netw., Singapore, vol. 86, May 2008, pp. 72. Search in Google Scholar

S. Gopi, G. Kannan, U. B. Desai, and S. N. Merchant, ‘‘Energy optimized path unaware layered routing protocol for underwater sensor networks,’’ in Proc. IEEE Global Telecommun., New Orleans, LO, USA, Dec. 2008, pp. 1–6. Search in Google Scholar

N. Z. Zenia, M. Aseeri, M. R. Ahmed, Z. I. Chowdhury, and M. S. Kaiser, ‘‘Energy-efficiency and reliability in MAC and routing protocols for underwater wireless sensor network: A survey,’’ J. Netw. Comput. Appl., vol. 71, pp. 72–85, Aug. 2016. Search in Google Scholar

X. Zhong, F. Chen, J. Fan, Q. Guan, F. Ji, and H. Yu, ‘‘Throughput analysis on 3-dimensional underwater acoustic network with one-hop mobile relay,’’ Sensors, vol. 18, no. 2, p. 252, Jan. 2018. Search in Google Scholar

A. Khan et al., ‘‘Routing protocols for underwater wireless sensor networks: Taxonomy, research challenges, routing strategies and future directions,’’ Sensors, vol. 18, no. 5, p. 1619, May 2018. Search in Google Scholar

F. Ahmed, Z. Wadud, N. Javaid, N. Alrajeh, M. S, Alabed, and U. Qasim, ‘‘Mobile sinks assisted geographic and opportunistic routing based interference avoidance for underwater wireless sensor network,’’ Sensors, vol. 18, no. 4, p. 1062, Apr. 2 Search in Google Scholar