1. bookVolume 35 (2019): Edizione 1 (March 2019)
Dettagli della rivista
License
Formato
Rivista
eISSN
2001-7367
Prima pubblicazione
01 Oct 2013
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
access type Accesso libero

Adjusting for Measurement Error in Retrospectively Reported Work Histories: An Analysis Using Swedish Register Data

Pubblicato online: 26 Mar 2019
Volume & Edizione: Volume 35 (2019) - Edizione 1 (March 2019)
Pagine: 203 - 229
Ricevuto: 01 Jul 2017
Accettato: 01 Aug 2018
Dettagli della rivista
License
Formato
Rivista
eISSN
2001-7367
Prima pubblicazione
01 Oct 2013
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Abstract

We use work histories retrospectively reported and matched to register data from the Swedish unemployment office to assess: 1) the prevalence of measurement error in reported spells of unemployment; 2) the impact of using such spells as the response variable of an exponential model; and 3) strategies for the adjustment of the measurement error. Due to the omission or misclassification of spells in work histories we cannot carry out typical adjustments for memory failures based on multiplicative models. Instead we suggest an adjustment method based on a mixture Bayesian model capable of differentiating between misdated spells and those for which the observed and true durations are unrelated. This adjustment is applied in two manners, one assuming access to a validation subsample and another relying on a strong prior for the mixture mechanism. Both solutions demonstrate a substantial reduction in the vast biases observed in the regression coefficients of the exponential model when survey data is used.

Keywords

Augustin, T. 1999. Correcting for Measurement Error in Parametric Duration Models By Quasi-likelihood. Technical Report, Max Plank Institute.Search in Google Scholar

Berkson, J. 1950. “Are There Two Regressions?” Journal of the American Statistical Association 45(250): 164–180. Doi: https://doi.org/10.2307/2280676.10.2307/2280676Apri DOISearch in Google Scholar

Biemer, P.P. 2011. Latent Class Analysis of Survey Error. Wiley.10.1002/9780470891155Search in Google Scholar

Biewen, E., S. Nolte, and M. Rosemann. 2008. “Perturbation by Multiplicative Noise and the Simulation Extrapolation Method.” Advances in Statistical Analysis 92: 375–389. Doi: https://doi.org/10.1007/s10182-008-0089-7.10.1007/s10182-008-0089-7Apri DOISearch in Google Scholar

Black, D.A., M.C. Berger, and S.A. Scott. 2000. “Bounding Parameter Estimates with Nonclassical Measurement Error.” Journal of the American Statistical Association 95(451): 739–748. Doi: https://doi.org/10.2307/2669454.10.2307/2669454Apri DOISearch in Google Scholar

Bound, J., C. Brown, and N.A. Mathiowetz. 2001. “Measurement Error in Survey Data.” In Handbook of Econometrics, edited by J. Heckman and E. Leamer. Vol. 5: 3705–3843. New York: Elsevier.10.1016/S1573-4412(01)05012-7Search in Google Scholar

Box-Steffensmeier, J.M. and B.S. Jones. 2004. Event History Modeling: A Guide for Social Scientists. Cambridge: Cambridge University Press.10.1017/CBO9780511790874Search in Google Scholar

Bradburn, N.M., J. Huttenlocher, and L. Hedges. 1994. “Telescoping and Temporal Memory.” In Autobiographical Memory and The Validity of Retrospective Reports, edited by N. Schwarz and S. Seymour, 203–215. New York: Springer.10.1007/978-1-4612-2624-6_14Search in Google Scholar

Brownstone, D. and R.G. Valletta. 1996. “Modelling Earnings Measurement Error: A Multiple Imputation Approach.” The Review of Economics and Statistics 78(4): 705–717. Doi: https://doi.org/10.2307/2109957.10.2307/2109957Apri DOISearch in Google Scholar

Butts, C.T. 2003. “Network Inference, Error, and Informant (in) Accuracy: A Bayesian Approach.” Social Networks 25(2): 103–140. Doi: https://doi.org/10.1016/S0378-8733(02)00038-2.10.1016/S0378-8733(02)00038-2Apri DOISearch in Google Scholar

Carpenter, B., A. Gelman, M. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M.A. Brubaker, J. Guo, P. Li, and A. Riddell. 2017. “Stan: A Probabilistic Programming Language.” Journal of Statistical Software 76(1): 1–32. Doi: https://doi.org/10.18637/jss.v076.i01.10.18637/jss.v076.i01Search in Google Scholar

Carroll, R.J. and L.A. Stefanski. 1990. “Approximate Quasilikelihood Estimation in Models with Surrogate Predictors.” Journal of the American Statistical Association 91: 242–250. Doi: https://doi.org/10.2307/2290000.10.2307/2290000Apri DOISearch in Google Scholar

Chen, M.H. and J.G. Ibrahim. 2003. “Conjugate Priors for Generalized Linear Models.” Statistica Sinica 13: 461–476. Available at: http://www3.stat.sinica.edu.tw/statistica/oldpdf/a13n212.pdf (accessed February 2019).Search in Google Scholar

Clayton, D.G. 1992. “Models for the Analysis of Cohort and Case-control Studies with Inaccurately Measured Exposures.” Statistical Models for Longitudinal Studies of Health: 301–331.Search in Google Scholar

Cole, S., H. Chu, and S. Greenland. 2006. “Multiple-imputation for Measurement-error Correction.” International Journal of Epidemiology 35: 1074–1081. Doi: https://doi. org/10.1093/ije/dyl097.10.1093/ije/dyl09716709616Apri DOISearch in Google Scholar

Cook, J. and L. Stefanski. 1994. “A Simulation Extrapolation Method for Parametric Measurement Error Models.” Journal of the American Statistical Association 89: 1314–1328. Doi: https://doi.org/10.2307/2290994.10.2307/2290994Apri DOISearch in Google Scholar

Crowder, R.G. 1976. “The Interference Theory of Forgetting in Long-term Memory.” In Principles of Learning and Memory, edited by R.G. Crowder. Oxford: Lawrence Erlbaum.Search in Google Scholar

Dellaportas, P. and D.A. Stephens. 1995. “Bayesian Analysis of Errors-in-variables Regression Models.” Biometrics 51(3): 1085–1095. Doi: https://doi.org/10.2307/2533007.10.2307/2533007Apri DOISearch in Google Scholar

Dumangane, M. 2007. Measurement error bias reduction in unemployment durations. Technical report, CEMMAP. Doi: https://doi.org/10.1920/wp.cem.2006.0306.10.1920/wp.cem.2006.0306Apri DOISearch in Google Scholar

Freedman, L.S., D. Midthune, R.J. Carroll, and V. Kipnis. 2008. “A Comparison of Regression Calibration, Moment Reconstruction and Imputation for Adjusting for Covariate Measurement Error in Regression.” Statistics in Medicine 27: 5195–5216. Doi: https://doi.org/10.1002/sim.3361.10.1002/sim.3361267623518680172Apri DOISearch in Google Scholar

Fuller, W. 1987. Measurement Error Models. New York: John Wiley and Sons.10.1002/9780470316665Search in Google Scholar

Gelman, A. et al. 2006. “Prior Distributions for Variance Parameters in Hierarchical Models (Comment on Article by Browne and Draper).” Bayesian Analysis 1(3): 515–534. Doi: https://doi.org/10.1214/06-BA117A.10.1214/06-BA117Apri DOISearch in Google Scholar

Geman, S. and D. Geman. 1984. “Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images.” IEEE Transactions On Pattern Analysis and Machine Intelligence 6: 721–741. Doi: https://doi.org/10.1109/TPAMI.1984.4767596.10.1109/TPAMI.1984.4767596Apri DOISearch in Google Scholar

Ghilagaber, G. and J. Koskinen. 2009. “Bayesian Adjustment of Anticipatory Covariates in the Analysis of Retrospective Data.” Mathematical Population Studies 16(2): 105–130. Doi: https://doi.org/10.1080/08898480902790171.10.1080/08898480902790171Apri DOISearch in Google Scholar

Gilks, W., S. Richardson, and D. Spiegelhalter. 1996. Markov Chain Monte Carlo in Practice. Chapman and Hall.10.1201/b14835Search in Google Scholar

Glesjer, L. 1990. “Improvements of the Naive Approach to Estimation in Nonlinear Errors-in-variables Regression Models.” In Statistical Analysis of Error Measurement Models and Application, edited by P. Brown and W. Fuller, 99–114. Providence: American Mathematics Society. Doi: https://doi.org/10.1090/conm/112.10.1090/conm/112Apri DOISearch in Google Scholar

Glewwe, P. 2007. “Measurement Error Bias in Estimates of Income and Income Growth Among the Poor: Analytical Results and a Correction Formula.” Economic Development and Cultural Change 56: 163–189. Doi: https://doi.org/10.1086/520559.10.1086/520559Apri DOISearch in Google Scholar

Golub, A., B.D. Johnson, and E. Labouvie. 2000. “On Correcting Biases in Self-reports of Age at First Substance use with Repeated Cross-section Analysis.” Journal of Quantitative Criminology 16: 45–68. Doi: https://doi.org/10.1023/A:1007573411129.10.1023/A:1007573411129Apri DOISearch in Google Scholar

Gustafson, P. 2003. Measurement Error and Misclassification in Statistics and Epidemiology. Boca Raton: Chapman and Hall.10.1201/9780203502761Search in Google Scholar

Holt, D., J.W. McDonald, and C.J. Skinner. 2011. “The Effect of Measurement Error on Event History Analysis.” In Measurement Error in Surveys, edited by P. Biemer, 665–685. New York: John Wiley.10.1002/9781118150382.ch32Search in Google Scholar

Huttenlocher, J., L. Hedges, and V. Prohaska. 1988. “Hierarchical Organization in Ordered Domains: Estimating the Dates of Events.” Psychological Review 95: 471–484.10.1037/0033-295X.95.4.471Search in Google Scholar

Ibrahim, J.G. and P.W. Laud. 1991. “On Bayesian Analysis of Generalized Linear Models using Jeffreys’s Prior.” Journal of the American Statistical Association 86(416): 981–986. Doi: https://doi.org/10.1037/0033-295X.95.4.471.10.1037/0033-295X.95.4.471Apri DOISearch in Google Scholar

Jäckle, A. 2008. Measurement error and data collection methods: Effects on estimates from event history data. Technical report, Institute for Social and Economic Research, ISER. Available at: https://www.iser.essex.ac.uk/research/publications/working-papers/iser/2008-13.pdf (accessed February 2019).Search in Google Scholar

Jeffreys, H. 1946. “An Invariant Form for the Prior Probability in Estimation Problems.” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 24: 453–461. Doi: https://doi.org/10.1098/rspa.1946.0056.10.1098/rspa.1946.005620998741Apri DOISearch in Google Scholar

Jenkins, S.P. and P. Lynn. 2005. Improving Survey Measurement of Income and Employment, 2001–2003 (2nd ed.). UK Data Service. Doi: https://doi.org/10.5255/UKDA-SN-5157-1.10.5255/UKDA-SN-5157-1Apri DOISearch in Google Scholar

Johnson, E.O. and L. Schultz. 2005. “Forward Telescoping Bias in Reported Age of Onset: An Example From Cigarette Smoking.” International Journal of Methods in Psychiatric Research 14: 119–129. Doi: https://doi.org/10.1002/mpr.2.10.1002/mpr.2Apri DOISearch in Google Scholar

Jürges, H. 2007. “Unemployment, Life Satisfaction and Retrospective Error.” Journal of the Royal Statistical Society, Series A 170(1): 43–61. Doi: https://doi.org/10.1111/j. 1467-985X.2006.00441.x.10.1111/j.1467-985X.2006.00441.xApri DOISearch in Google Scholar

Kapteyn, A. and J.Y. Ypma. 2007. “Measurement Error and Misclassification: A Comparison of Survey and Administrative Data.” Journal of Labour Economics 25(3): 513–551. Doi: https://doi.org/10.1086/513298.10.1086/513298Apri DOISearch in Google Scholar

Kettunen, J. 1997. “Education and Unemployment Duration.” Economics of Education Review 16(2): 163–170. Doi: https://doi.org/10.1016/S0272-7757(96)00057-X.10.1016/S0272-7757(96)00057-XApri DOISearch in Google Scholar

Kreuter, F., G. Mller, and M. Trappman. 2010. “Nonresponse and Measurement Error in Employment Research: Making Use of Administrative Data.” Public Opinion Quarterly 74(5): 880–906. Doi: https://doi.org/10.1093/poq/nfq060.10.1093/poq/nfq060Apri DOISearch in Google Scholar

Lancaster, T. 1979. “Econometric Methods for the Duration of Unemployment.” Econometrica 47(4): 939–956. Doi: https://doi.org/10.2307/1914140.10.2307/1914140Apri DOISearch in Google Scholar

Levine, P. 1993. “CPS Contemporaneous and Retrospective Unemployment Compared.” Monthly Labor Review 116: 33–39. Available at: https://heinonline.org/HOL/Page? handle=hein.journals/month116&div=89&g_sent=1&casa_token=pTR6IZj22XsAA AAA:xq9wIH0hhVt7hMJgw6ViXuW_gWKx8-EARBvTPW32LcaWEKxYad-v0O53 OauyAW25tklO5TD6&collection=journals (accessed February 2019).Search in Google Scholar

Lunn, D.J., A. Thomas, N. Best, and D. Spiegelhalter. 2000. “Winbugs a Bayesian Modelling Framework: Concepts, Structure, and Extensibility.” Statistics and Computing 10: 325–337. Doi: https://doi.org/10.1023/A:1008929526011.10.1023/A:1008929526011Search in Google Scholar

Manzoni, A., R. Luijkx, and R. Muffels. 2011. “Explaining Differences in Labour Market Transitions between Panel and Life-course Data in West-Germany.” Quality and Quantity 45: 241–261. Doi: https://doi.org/10.1007/s11135-009-9292-1.10.1007/s11135-009-9292-1Apri DOISearch in Google Scholar

Manzoni, A., J.K. Vermunt, R. Luijkx, and R. Muffels. 2010. “Memory Bias in Retrospectively Collected Employment Careers: A Model-based Approach to Correct for Measurement Error.” Sociological Methodology 40: 39–73. Doi: https://doi.org/10. 1111/j.1467-9531.2010.01230.x.10.1111/j.1467-9531.2010.01230.xApri DOISearch in Google Scholar

Mathiowetz, N. and G. Duncan. 1988. “Out of Work, Out of Mind: Response Errors in Retrospective Reports of Unemployment.” Journal of Business and Economic Statistics 6(2): 221–229. Doi: https://doi.org/10.1080/07350015.1988.10509656.10.1080/07350015.1988.10509656Apri DOISearch in Google Scholar

Messer, K. and L. Natarajan. 2008. “Maximum Likelihood, Multiple Imputation and Regression Calibration for Measurement Error Adjustment.” Statistics in Medicine 27(30): 6332–6350. Doi: https://doi.org/10.1002/sim.3458.10.1002/sim.3458Apri DOISearch in Google Scholar

Morgenstern, R. and N. Barrett. 1974. “The Retrospective Bias in Unemployment Reporting By Sex, Race and Age.” Journal of the American Statistical Association 69(346): 355–357. Doi: https://doi.org/10.2307/2285657.10.2307/2285657Apri DOISearch in Google Scholar

Neter, J. and J. Waksberg. 1964. “A Study of Response Errors in Expenditures Data From Household Interviews.” Journal of the American Statistical Association 59: 18–55. Doi: https://doi.org/10.1080/01621459.1964.10480699.10.1080/01621459.1964.10480699Apri DOISearch in Google Scholar

Neuhaus, J.M. 1999. “Bias and Efficiency Loss Due to Misclassified Responses in Binary Regression.” Biometrika 86(4): 843–855. Doi: https://doi.org/10.1093/biomet/86.4.843.10.1093/biomet/86.4.843Apri DOISearch in Google Scholar

Novick, M.R. 1966. “The Axioms and Principal Results of Classical Test Theory.” Journal of Mathematical Psychology 3: 1–18. Doi: https://doi.org/10.1016/0022-2496 (66)90002-2.10.1016/0022-2496(66)90002-2Apri DOISearch in Google Scholar

Office for National Statistics. Social and Vital Statistics Division. 2006. General Household Survey, 2003–2004. [data collection]. 2nd Edition. UK Data Service. SN: 5150. Available at: http://doi.org/10.5255/UKDA-SN-5150-1.10.5255/UKDA-SN-5150-1Apri DOISearch in Google Scholar

Office for National Statistics. 2008. Social and Vital Statistics Division. ONS Omnibus Survey, April 2006. [data collection]. UK Data Service. SN: 5997. Available at: http://doi.org/10.5255/UKDA-SN-5997-1.10.5255/UKDA-SN-5997-1Apri DOISearch in Google Scholar

Paull, G. 2002. Biases in the reporting of labour market dynamics. Technical report, Institute for Fiscal Studies. Doi: https://doi.org/10.1920/wp.ifs.2002.0210.10.1920/wp.ifs.2002.0210Apri DOISearch in Google Scholar

Pavlopoulos, D. and J.K. Vermunt. 2015. Measuring temporary employment. do survey or register data tell the truth? Technical report, Vrije Universiteit Amsterdam. Available at: https://www150.statcan.gc.ca/n1/pub/12-001-x/2015001/article/14151-eng.htm (accessed February 2019).Search in Google Scholar

Peytchev, A. 2012. “Multiple Imputation for Unit Nonresponse and Measurement Error.” Public Opinion Quarterly 76(2): 214–237. Doi: https://doi.org/10.1093/poq/nfr065.10.1093/poq/nfr065Apri DOISearch in Google Scholar

Pickles, A., K. Pickering, E. Simonoff, J. Silberg, J. Meyer, and H. Maes. 1998. “Genetic Clocks and Soft Events: A Twin Model for Pubertal Development and Other Recalled Sequences of Developmental Milestones, Transitions, or Ages At Onset.” Behavior Genetics 28: 243–253. Doi: https://doi.org/10.1023/A:102161522.10.1023/A:102161522Apri DOISearch in Google Scholar

Pickles, A., K. Pickering, and C. Taylor. 1996. “Reconciling Recalled Dates of Developmental Milestones, Events and Transitions: A Mixed Generalized Linear Model with Random Mean and Variance Functions.” Journal of the Royal Statistical Society. Series A1: 225–234. Doi: https://doi.org/10.2307/2983170.10.2307/2983170Apri DOISearch in Google Scholar

Pina-Sánchez, J. 2016. “Adjustment of Recall Errors in Duration Data using Simex.” Advances in Methodology and Statistics 12(1): 27–58. Available at: http://ibmi.mf. uni-lj.si/mz/2016/no-1/p3.pdf (accessed February 2019).10.51936/cspz2183Search in Google Scholar

Pina-Sánchez, J., J. Koskinen, and I. Plewis. 2013. “Implications of Retrospective Measurement Error in Event History Analysis.” Metodología de Encuestas 15: 5–25. Available at: http://casus.usal.es/pkp/index.php/MdE/article/view/1032/pdf_2 (accessed February 2019).Search in Google Scholar

Pina-Sánchez, J., J. Koskinen, and I. Plewis. 2014. “Measurement Error in Retrospective Work Histories.” Survey Research Methods 8: 43–55. Doi: https://doi.org/10.18148/srm/2014.v8i1.5144.Search in Google Scholar

Plummer, M., N. Best, K. Cowles, and K. Vines. 2006. “Coda: Convergence Diagnosis and Output Analysis.” R News 6: 7–11. Available at: http://oro.open.ac.uk/22547/ (accessed February 2019).Search in Google Scholar

Poterba, J. and L. Summers. 1995. “Unemployment Benefits and Labor Market Transitions: A Multinomial Logit Model with Errors in Classification.” Review of Economics and Statistics 77: 207–216. Doi: https://doi.org/10.2307/2109860.10.2307/2109860Apri DOISearch in Google Scholar

Poterba, J.M. and L.H. Summers. 1984. “Response Variation in the CPS: Caveats for the Unemployment Analyst.” Monthly Labor Review 107: 37–43. Available at: https://stats.bls.gov/opub/mlr/1984/03/rpt1full.pdf (accessed February 2019).Search in Google Scholar

Pyy-Martikainen, M. and U. Rendtel. 2009. “Measurement Errors in Retrospective Reports of Event Histories. A Validation Study with Finnish Register Data.” Survey Research Methods 3(3): 139–155. Doi: https://doi.org/10.1002/sim.4780121806.10.1002/sim.4780121806Apri DOISearch in Google Scholar

Richardson, S. and W.R. Gilks. 1993. “Conditional Independence Models for Epidemiological Studies with Covariate Measurement Error.” Statistics in Medicine 12(18): 1703–1722. Doi: https://doi.org/10.1002/sim.4780121806.10.1002/sim.4780121806Apri DOISearch in Google Scholar

Rubin, D.B. 1996. “Multiple Imputation After 18+ Years.” Journal of the American statistical Association 91(434): 473–489. Doi: https://doi.org/10.2307/2291635.10.2307/2291635Apri DOISearch in Google Scholar

Rubin, D.C. 1987. Multiple Imputation for Nonresponse in Surveys. New York: John Wiley and Sons.10.1002/9780470316696Search in Google Scholar

Rubin, D.C. and A.D. Baddeley. 1989. “Telescoping is Not Time Compression: A Model.” Memory & Cognition 17: 653–661. Doi: https://doi.org/10.3758/BF03202626. Shiffrin, R.M. and J.R. Cook. 1978. “Short-term Forgetting of Item and Order10.3758/BF03202626.Shiffrin.....1978.-Apri DOISearch in Google Scholar

Information.” Journal of Verbal Learning and Verbal Behavior 17(2): 189–218. Doi: https://doi.org/10.1016/S0022-5371(78)90146-9.10.1016/S0022-5371(78)90146-9Apri DOISearch in Google Scholar

Skinner, C. and K. Humphreys. 1999. “Weibull Regression for Lifetimes Measured with Error.” Lifetime Data Analysis 5: 23–37. Doi: https://doi.org/10.1023/A:10096 74915476.10.1023/A:1009674915476Apri DOISearch in Google Scholar

Solga, H. 2001. “Longitudinal Survey and the Study of Occupational Mobility: Panel and Retrospective Design in Comparison.” Quality and Quantity 35: 291–309. Doi: https://doi.org/10.1023/A:1010387414959.10.1023/A:1010387414959Apri DOISearch in Google Scholar

Veronesi, G., M.M. Ferrario, and L.E. Chambless. 2011. “Comparing Measurement Error Correction Methods for Rate-of-change Exposure Variables in Survival Analysis.” Statistical Methods in Medical Research 22(6): 583–597. Doi: https://doi.org/10.1177/0962280210395742.10.1177/096228021039574221300627Apri DOISearch in Google Scholar

Wang, C.Y., L. Hsu, R.L. Feng, and Z.D. Prentice. 1997. “Regression Calibration in Failure Time Regression.” Biometrics 53: 131–145. Doi: https://doi.org/10.2307/2533103.10.2307/2533103Apri DOISearch in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo