[Abdalla N., El-Ramady H., Seliem M.K., El-Mahrouk M.E., Taha N., Bayoumi Y. et al. 2022. An academic and technical overview on plant micropropagation challenges. Horticulturae 8(8); 677; 28 p. DOI: 10.3390/horticulturae8080677.]Search in Google Scholar
[Abdel-Karim A.H.I. 2017. Identifying and controlling contamination of date palm tissue cultures. In: Al-Khayri J.M., Jain S.M., Johnson D.V. (Eds.), Date palm bio-technology protocols. Methods in Molecular Biology 1637: 165–174. DOI: 10.1007/978-1-4939-7156-5_14.]Search in Google Scholar
[Aggarwal D., Kumar A., Reddy M.S. 2010. Shoot organ-ogenesis in elite clones of Eucalyptus tereticornis. Plant Cell, Tissue and Organ Culture 102: 45–52. DOI: 10.1007/s11240-010-9703-y.]Search in Google Scholar
[Ahmed A.N. 2023. Fungal contaminants in tissue culture of date palm (Phoenix dactylifera L.): problems and solutions. Basrah Journal for Date Palm Research 22(1): 88–107. [in Arabic with English abstract]]Search in Google Scholar
[Ahmed A.N., Abass M.H. 2022. Disease note: First report of Cladosporium ramotenellum Schub., Zalar, Crous & Braun, 2007 (Fungi: Dothideomycetes) as a potential contaminant of date palm tissue culture. Basrah Journal of Agricultural Sciences 35(2): 373–375. DOI: 10.37077/25200860.2022.35.2.28.]Search in Google Scholar
[Alagarsamy K., Shamala L.F., Wei S. 2018. Influence of media supplements on inhibition of oxidative browning and bacterial endophytes of Camellia sinensis var. sinensis. 3 Biotech 8; 356; 7 p. DOI: 10.1007/s13205-018-1378-9.]Search in Google Scholar
[Al-Asadi A.Z.R., Al-Mayahi A.M.W., Abdulwahid A.H. 2020. Effect of phloroglucinol (PG) on in vitro growth and multiplication of the date palm cv. Barhee. Basrah Journal for Date Palm Research 19(1): 31–45. [in Arabic with English abstract]]Search in Google Scholar
[Al-Asadi A.Z.R., Al-Mayahi A.M.W., Awad K.M. 2024. Effects of dicamba and casein hydrolysate on in vitro growth and shoot regeneration of date palm (Phoenix dactylifera L.) cv. Barhee. Folia Oecologica 51(1): 56–65. DOI: 10.2478/foecol-2024-0006.]Search in Google Scholar
[Al-Mayahi A.M.W. 2022a. The effect of polyamines and silver thiosulphate on micropropagation of date palm followed by genetic stability assessment. World Journal of Microbiology and Biotechnology 38; 124; 12 p. DOI: 10.1007/s11274-022-03305-5.]Search in Google Scholar
[Al-Mayahi A.M.W. 2022b. In vitro propagation and assessment of genetic stability in date palm as affected by chitosan and thidiazuron combinations. Journal of Genetic Engineering and Biotechnology 20(1); 165; 10 p. DOI: 10.1186/s43141-022-00447-9.]Search in Google Scholar
[Al-Mayahi A.M.W. 2022c. The effect of phenyl acetic acid (PAA) on micropropagation of date palm followed by genetic stability assessment. Journal of Plant Growth Regulation 41(8): 3127–3137. DOI: 10.1007/s00344-021-10500-5.]Search in Google Scholar
[Al-Mayahi A.M.W. 2023. Combined efficiency of iron nanoparticles (IONPs) and salicylic acid (SA) on in vitro propagation of date palm (Phoenix dactylifera L.) under combined drought and salinity. South African Journal of Botany 162: 324–333. DOI: 10.1016/j.sajb.2023.09.019.]Search in Google Scholar
[Al-Mayahi A.M.W. 2024a Triacontanol ‘TRIA’ application to mitigate the adverse effects of drought and salinity stress under in vitro culture of date palm plants. Folia Oecologica 51(2): 250–262. DOI: 10.2478/foecol-2024-0023.]Search in Google Scholar
[Al-Mayahi A.M.W. 2024b. Effect of ancymidol and phloroglucinol on the number and quality of shoots and roots in the micropropagation of date palm (Phoenix dactylifera L.). Journal of Horticultural Research 32(2): 47–56. DOI: 10.2478/johr-2024-0013.]Search in Google Scholar
[Al-Mayahi A.M.W., Ahmed A.N., Al-Khalifa A.A.S. 2010. Isolation and diagnose of fungi associated with the cultivation of tissues of five cultivars of date palm (Phoenix dactylifera L.) and the effect of fungicide Benlate in control. Basrah Journal for Date Palm Research 9(2): 79–98. [in Arabic with English abstract]]Search in Google Scholar
[Al-Mssallem M.Q., Alqurashi R.M., Al-Khayri J.M. 2020. Bioactive Compounds of Date Palm (Phoenix dactylifera L.). In: Murthy H.N., Bapat V.A. (Eds.), Bioactive Compounds in Underutilized Fruits and Nuts. Reference Series in Phytochemistry. Springer, pp. 91–105. DOI: 10.1007/978-3-030-30182-8_6.]Search in Google Scholar
[Chudasama R.S., Thaker V. 2007. Free and conjugated IAA and PAA in developing seeds of two varieties of pigeon pea (Cajanus cajan). General and Applied Plant Physiology 33(1–2): 41–57.]Search in Google Scholar
[Danilova S.A., Dolgikh Y.I. 2004. The stimulatory effect of the antibiotic cefotaxime on plant regeneration in maize tissue culture. Russian Journal of Plant Physiology 51(4): 559–562. DOI: 10.1023/b:rupp.0000035752.09295.55.]Search in Google Scholar
[Dong Z.-Y., Narsing Rao M.P., Xiao M., Wang H.-F., Hozzein W.N., Chen W., Li W.-J. 2017. Antibacterial activity of silver nanoparticles against Staphylococcus warneri synthesized using endophytic bacteria by photo-irradiation. Frontiers in Microbiology 8; 1090; 8 p. DOI: 10.3389/fmicb.2017.01090.]Search in Google Scholar
[Duressa D., Soliman K., Chen D. 2010. Identification of aluminum responsive genes in Al-tolerant soybean line PI 416937. International Journal of Plant Genomics 2010; 164862; 13 p. DOI: 10.1155/2010/164862.]Search in Google Scholar
[Emoghene B.O., Idu M., Eke C.R., Asemota O. 2020. Effects of different sterilization regimes and growth regulators on micropropagation of female date palm (Phoenix dactylifera L.). Nigerian Journal of Biotechnology 37(1): 159–168. DOI: 10.4314/njb.v37i1.17.]Search in Google Scholar
[Gantait S., El-Dawayati M.M., Panigrahi J., Labrooy C., Verma S.K. 2018. The retrospect and prospect of the applications of biotechnology in Phoenix dactylifera L. Applied Microbiology and Biotechnology 102: 8229–8259. DOI: 10.1007/s00253-018-9232-x.]Search in Google Scholar
[Grzebelus E., Skop Ł. 2014. Effect of β-lactam antibiotics on plant regeneration in carrot protoplast cultures. In Vitro Cellular and Developmental Biology – Plant 50: 568–575. DOI: 10.1007/s11627-014-9626-0.]Search in Google Scholar
[Hegazi E.S., Yousef A.R.M., Abdallatif A.M., Mahmoud T.S.M., Mostafa M.K.M. 2021. Effect of silver nanoparticles, medium composition and growth regulators on in vitro propagation of Picual olive cultivar. Egyptian Journal of Chemistry 64(12): 6961–6969. DOI: 10.21608/ejchem.2021.78774.3853.]Search in Google Scholar
[Ibraheem D.R., Hussein N.N., Sulaiman G.M. Mohammed H.A., Khan R.A., Al Rugaie O. 2022. Ciprofloxacin-loaded silver nanoparticles as potent nano-antibiotics against resistant pathogenic bacteria. Nanomaterials 12(16); 2808; 25 p. DOI: 10.3390/nano12162808.]Search in Google Scholar
[Jasim A.M., Al-Mayahi A.M.W., Attaha A.H.M. 2009. Propagation of four rare cultivars of date palm (Phoenix dactylifera L.) by tissue culture tecniques. Basrah Journal for Date Palm Research 8(1): 72–99. [in Arabic with English abstract]]Search in Google Scholar
[Jasim B., Thomas R., Mathew J., Radhakrishnan E.K. 2017. Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharmaceutical Journal 25(3): 443–447. DOI: 10.1016/j.jsps.2016.09.012.]Search in Google Scholar
[Jasim N.S., Salih A.M., Ati M.A. 2021. Evaluating the efficiency of plants essential oils against common fungal contamination affecting tissue culture of date palms (Phoenix dactylifera L.) by in vitro culture. Research Journal of Chemistry and Environment 25(6): 40–45.]Search in Google Scholar
[Jones A.M.P., Saxena P.K. 2013. Inhibition of phenylpropanoid biosynthesis in Artemisia annua L.: A novel approach to reduce oxidative browning in plant tissue culture. PLoS ONE 8(10); e76802; 13 p. DOI: 10.1371/journal.pone.0076802.]Search in Google Scholar
[Kaur A., Gill M.S., Ruma D., Gosal S.S. 2008. Enhanced in vitro shoot multiplication and elongation in sug-arcane using cefotaxime. Sugar Tech 10(1): 60–64. DOI: 10.1007/s12355-008-0010-4.]Search in Google Scholar
[Kim S.W., Jung J.H., Lamsal K., Kim Y. S., Min J.S., Lee Y.S. 2012. Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40(1): 53–58. DOI: 10.5941/myco.2012.40.1.053.]Search in Google Scholar
[Krishnaraj C., Jagan E.G., Ramachandran R., Abirami S.M., Mohan N., Kalaichelvan P.T. 2012. Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism. Process Biochemistry 47(4): 651–658. DOI: 10.1016/j.procbio.2012.01.006.]Search in Google Scholar
[Lakshmi P.V.C., Reddy C.M.N., Rathinapriya P., Ramesh M., Srinivas B. 2021. In-vitro seed germination and effect of TDZ and AgNO3 on high frequency shoot regeneration from Ruellia tuberosa L., using cotyledanary node explants. International Journal of Pharmaceutical Sciences and Research 12(4): 2211–2224. DOI: 10.13040/ijpsr.0975-8232.]Search in Google Scholar
[Manchanda P., Kaur A., Gosal S.S. 2011. Impact of cefotaxime on in vitro shoot elongation and regeneration in banana (Musa acuminata). Journal of Applied Horticulture 13(1): 52–55. DOI: 10.37855/jah.2011.v13i01.12.]Search in Google Scholar
[Mano Y., Nemoto K. 2012. The pathway of auxin biosyn-thesis in plants. Journal of Experimental Botany 63(8): 2853–2872. DOI: 10.1093/jxb/ers091.]Search in Google Scholar
[Mittal P., Gosal S.S, Senger A., Kumar P. 2009. Impact of cefotaxime on somatic embryogenesis and shoot regeneration in sugarcane. Physiology and Molecular Biology of Plants 15(3): 257–265. DOI: 10.1007/s12298-009-0029-3.]Search in Google Scholar
[Murashige T., Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15(3): 473–497. DOI: 10.1111/j.1399-3054.1962.tb08052.x.]Search in Google Scholar
[Nagar P.K., Sood S. 2006. Changes in endogenous auxins during winter dormancy in tea (Camellia sinensis L.) O. Kuntze. Acta Physiologiae Plantarum 28(2): 165–169. DOI: 10.1007/s11738-006-0043-9.]Search in Google Scholar
[Ogawa Y., Mii M. 2004. Screening for highly active β-lactam antibiotics against Agrobacterium tumefaciens. Archives of Microbiology 181(4): 331–336. DOI: 10.1007/s00203-004-0650-z.]Search in Google Scholar
[Okoroafor U.E. 2022. Microbial contamination in plant tissue culture and elimination strategies. Nigerian Agricultural Journal 53(2): 348–355.]Search in Google Scholar
[de Oliveira M.L.P., Costa M.G.C., da Silva C.V., Otoni W.C. 2010. Growth regulators, culture media and antibiotics in the in vitro shoot regeneration from mature tissue of citrus cultivars. Pesquisa Agropecuária Brasileira 45(7): 654–660. DOI: 10.1590/s0100-204x2010000700004.]Search in Google Scholar
[Parveen A., Rao S. 2015. Effect of nanosilver on seed germination and seedling growth in Pennisetum glaucum. Journal of Cluster Science 26(3): 693–701. DOI: 10.1007/s10876-014-0728-y.]Search in Google Scholar
[Permadi N., Nurzaman M., Alhasnawi A.N., Doni F., Julaeha E. 2023. Managing lethal browning and microbial contamination in Musa spp. tissue culture: Synthesis and perspectives. Horticulturae 9(4); 453; 16 p. DOI: 10.3390/horticulturae9040453.]Search in Google Scholar
[Qin Y.H., Teixeira da Silva J.A., Bi J.H., Zhang S.L., Hu G.B. 2011. Response of in vitro strawberry to antibiotics. Plant Growth Regulation 65(1): 183–193. DOI: 10.1007/s10725-011-9587-9.]Search in Google Scholar
[Rezvani N., Sorooshzadeh A., Farhadi N. 2012. Effect of nano-silver on growth of saffron in flooding stress. International Journal of Biological, Life and Agricultural Sciences 6(1): 34–39.]Search in Google Scholar
[Rohim F.M., El-Wakeel H., Abd El-Hamid A., Abd El-Moniem E.A. 2020. Impact of nanoparticles of in vitro propagation of date palm cv. Barhee by immature inflorescences. Arab Universities Journal of Agricultural Sciences 28(4): 1187–1202. DOI: 10.21608/ajs.2020.41022.1247.]Search in Google Scholar
[Rostami A.A., Shahsavar A. 2009. Nano-silver particles eliminate the in vitro contaminations of olive ‘Mission’ explants. Asian Journal of Plant Sciences 8(7): 505–509. DOI: 10.3923/ajps.2009.505.509.]Search in Google Scholar
[Rout G.R., Mohapatra A., Jain S.M. 2006. Tissue culture of ornamental pot plant: A critical review on present scenario and future prospects. Biotechnology Advances 24(6): 531–560. DOI: 10.1016/j.biotechadv.2006.05.001.]Search in Google Scholar
[Shehata A.M., Wannarat W., Skirvin R.M., Norton M.A. 2010. The dual role of carbenicillin in shoot regeneration and somatic embryogenesis of horseradish (Armoracia rusticana) in vitro. Plant Cell, Tissue and Organ Culture 102(3): 397–402. DOI: 10.1007/s11240-010-9732-6.]Search in Google Scholar
[da Silva Mendes A.F., Cidade L.C., de Oliveira M.L.P., Otoni W.C., Soares-Filho W.D.S., Costa M.G.C. 2009. Evaluation of novel beta-lactam antibiotics in comparison to cefotaxime on plant regeneration of Citrus sinensis L. Osb. Plant Cell, Tissue and Organ Culture 97: 331–336. DOI: 10.1007/s11240-009-9518-x.]Search in Google Scholar
[Singleton V.L., Rossi J.A. Jr. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture 16(3): 144–158. DOI: 10.5344/ajev.1965.16.3.144.]Search in Google Scholar
[Syu Y.-Y., Hung J.-H., Chen J.-C., Chuang H.-W. 2014. Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiology and Biochemistry 83: 57–64. DOI: 10.1016/j.plaphy.2014.07.010.]Search in Google Scholar
[Vinković T., Novák O., Strnad M., Goessler W., Jurašin D.D., Parađiković N., Vinković Vrček I. 2017. Cytokinin response in pepper plants (Capsicum annuum L.) exposed to silver nanoparticles. Environmental Research 156: 10–18. DOI: 10.1016/j.envres.2017.03.015.]Search in Google Scholar
[Wojtania A., Puławska J., Gabryszewska E. 2005. Identification and elimination of bacterial contaminants from Pelargonium tissue cultures. Journal of Fruit and Ornamental Plant Research 13: 101–108.]Search in Google Scholar
[Worrall E.A., Hamid A., Mody K.T., Mitter N., Pappu H.R. 2018. Nanotechnology for plant disease management. Agronomy 8(12); 285; 24 p. DOI: 10.3390/agronomy8120285.]Search in Google Scholar
[Zuverza-Mena N., Armendariz R., Peralta-Videa J.R., Gardea-Torresdey J.L. 2016. Effects of silver nanoparticles on radish sprouts: Root growth reduction and modifications in the nutritional value. Frontiers in Plant Science 7; 90; 11 p. DOI: 10.3389/fpls.2016.00090.]Search in Google Scholar