Accesso libero

Influence of Tap and Hot Water Treatment Before Short-Term Storage on Biologically Active Compounds and Sensory Quality of Wild Rocket Leaves (Diplotaxis tenuifolia L.)

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Barbagallo R., Chisari M. Patané C. 2012. Polyphenol oxidase total phenolics and ascorbic acid changes during storage of minimally processed ‘California Wonder’ and ‘Quadrato d’Asti’ sweet peppers. LWT – Food Science and Technology 49 (2): 192–196. DOI: 10.1016/j.lwt.2012.06.023.10.1016/j.lwt.2012.06.023Search in Google Scholar

Barrett D.M., Beaulieu J.C., Shewfelt R. 2010. Color, flavor, texture, and nutritional quality of fresh-cut fruits and vegetables: desirable levels, instrumental and sensory measurement, and the effects of processing. Critical Reviews in Food Science and Nutrition 50: 369–389. DOI: 10.1080/10408391003626322.10.1080/10408391003626322Search in Google Scholar

Bell L., Methven L., Signore A., Oruna-Concha M.J., Wagstaff C. 2017. Analysis of seven salad rocket (Eruca sativa) accessions: the relationship between sensory attributes and volatile and non-volatile compounds. Food Chemistry 218: 181–191. DOI: 10.1016/j.foodchem.2016.09.076.10.1016/j.foodchem.2016.09.076Search in Google Scholar

Bell L., Wagstaff C. 2014. Glucosinolates, myrosinase hydrolysis products, and flavonols found in rocket (Eruca sativa and Diplotaxis tenuifolia). Journal of Agricultural and Food Chemistry 62(20): 4481–4492. DOI: 10.1021/jf501096x.10.1021/jf501096xSearch in Google Scholar

Bennett R., Rosa E.A.S., Mellon F.A., Kroon P.A. 2006. Ontogenic profiling of glucosinolates, flavonoids, and other secondary metabolites in Eruca sativa (salad rocket), Diplotaxis erucoides (wall rocket), Diplotaxis tenuifolia (wild rocket), and Bunias orientalis (Turkish rocket). Journal of Agricultural and Food Chemistry 54(11): 4005–4015. DOI: 10.1021/jf052756t.10.1021/jf052756tSearch in Google Scholar

Brand-Williams W., Cuvelier M.E., Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT – Food Science and Technology 28: 25–30. DOI: 10.1016/s0023-6438(95)80008-5.10.1016/S0023-6438(95)80008-5Search in Google Scholar

Cantwell M.I., Kasmire R.F. 2002. Postharvest handling systems: flower, leafy, and stem vegetables. Post-harvest technology of horticultural crops. In: Kader AA. (Ed.), Postharvest technology of horticultural crops. University of California, pp. 423–433.Search in Google Scholar

Fallik E., Grinberg S., Alkalai S., Yekutieli O., Wiseblum A., Regev R. et al. 1999. A unique rapid hot water treatment to improve storage quality of sweet pepper. Postharvest Biology and Technology 15(1): 25–32. DOI: 10.1016/s0925-5214(98)00066-0.10.1016/S0925-5214(98)00066-0Search in Google Scholar

Fallik E., Ilic Z. 2019. Positive and negative effects of heat treatment on the incidence of physiological disorders in fresh produce. In: Tonetto de Freitas S., Pareek S. (Eds.), Postharvest Physiological Disorders in Fruits and Vegetables. CRC Press, pp. 111–126. DOI: 10.1201/b22001-6.10.1201/b22001-6Search in Google Scholar

Ferrante A., Incrocci L., Maggini R., Serra G., Tognoni F. 2004. Colour changes of fresh-cut leafy vegetables during storage. Journal of Food, Agriculture and Environment 2: 40–44. DOI: 10.1234/4.2004.250.Search in Google Scholar

Ferguson I.B., Ben-Yehoshua S., Mitcham E.J., McDonald R.E., Lurie S. 2000. Postharvest heat treatments: introduction and workshop summary. Post-harvest Biology and Technology 21(1): 1–6. DOI: 10.1016/s0925-5214(00)00160-5.10.1016/S0925-5214(00)00160-5Search in Google Scholar

Glowacz M., Mogren L.M., Reade J.P.H., Cobb A.H., Monaghan J.M. 2013. Can hot water treatments enhance or maintain postharvest quality of spinach leaves? Postharvest Biology and Technology 81: 23–28. DOI: 10.1016/j.postharvbio.2013.02.004.10.1016/j.postharvbio.2013.02.004Search in Google Scholar

Glowacz M., Reade J., Monaghan J., Mogren L. 2018. Hot water treatment after harvest preserves nutritional quality of spinach during storage. Acta Horticulturae 1209: 123–128. DOI: 10.17660/actahortic.2018.1209.18.10.17660/ActaHortic.2018.1209.18Search in Google Scholar

Gómez F., Fernández L., Gergoff G., Guiamet J.J., Chaves A., Bartoli C.G. 2008. Heat shock increases mitochondrial H2O2 production and extends post-harvest life of spinach leaves. Postharvest Biology and Technology 49(2): 229–234. DOI: 10.1016/j.postharvbio.2008.02.012.10.1016/j.postharvbio.2008.02.012Search in Google Scholar

Kaur Ch., Kapoor H.C. 2001. Antioxidants in fruits and vegetables – the millennium’s health. International Journal of Food Science and Technology 36: 703–725. DOI: 10.1111/j.1365-2621.2001.00513.x.10.1111/j.1365-2621.2001.00513.xSearch in Google Scholar

Koukounaras A., Siomos A.S., Sfakiotakis E. 2009. Impact of heat treatment on ethylene production and yellowing of modified atmosphere packaged rocket leaves. Postharvest Biology and Technology 54: 172–176. DOI: 10.1016/j.postharvbio.2009.07.002.10.1016/j.postharvbio.2009.07.002Search in Google Scholar

Løkke M.M., Seefeldt H.F., Edelenbos M. 2012. Freshness and sensory quality of packaged wild rocket. Postharvest Biology and Technology 73: 99–106. DOI: 10.1016/j.postharvbio.2012.06.004.10.1016/j.postharvbio.2012.06.004Search in Google Scholar

Lurie S. 1998. Postharvest heat treatments. Postharvest Biology and Technology 14(3): 257–269. DOI: 10.1016/s0925-5214(98)00045-3.10.1016/S0925-5214(98)00045-3Search in Google Scholar

Martínez-Sánchez A., Marín A., Llorach R., Ferreres F., Gil M.I. 2006a. Controlled atmosphere preserves quality and phytonutrients in wild rocket (Diplotaxis tenuifolia). Postharvest Biology and Technology 40: 26–33. DOI: 10.1016/j.postharvbio.2005.12.015.10.1016/j.postharvbio.2005.12.015Search in Google Scholar

Martínez-Sánchez A., Allende A., Bennett R.N., Ferreres F., Gil M.I. 2006b. Microbial. nutritional and sensory quality of rocket leaves as affected by different sanitizers. Postharvest Biology and Technology 42: 86–97. DOI: 10.1016/j.postharvbio.2006.05.010.10.1016/j.postharvbio.2006.05.010Search in Google Scholar

Martínez-Sánchez A., Luna M.C., Selma M.V., Tudela J.A., Abad J., Gil M.I. 2012. Baby-leaf and multi-leaf of green and red lettuces are suitable raw materials for the fresh-cut industry. Postharvest Biology and Technology 63: 1–10. DOI: 10.1016/j.postharvbio.2011.07.010.10.1016/j.postharvbio.2011.07.010Search in Google Scholar

Michalczyk M., Macura R. 2008. Effect of storage conditions on the quality of some selected low processed vegetable products available in the markets. Żywność. Nauka. Technologia. Jakość 3(58): 96–107. [in Polish with English abstract]Search in Google Scholar

Nielsen T., Bergström B., Borch E. 2008. The origin of off-odours in packaged rucola (Eruca sativa). Food Chemistry 110: 96–105. DOI: 10.1016/j.foodchem.2008.01.063.10.1016/j.foodchem.2008.01.06326050171Search in Google Scholar

Péneau S., Linke A., Escher F., Nuessli J. 2009. Freshness of fruits and vegetables: consumer language and perception. British Food Journal 111: 243–256. DOI: 10.1108/00070700910941453.10.1108/00070700910941453Search in Google Scholar

PN-A-04019:1998. Produkty spożywcze. Oznaczanie zawartości witaminy C.Search in Google Scholar

PN-ISO 8589:1998. Analiza sensoryczna. Ogólne wytyczne projektowania pracowni analizy sensorycznej.Search in Google Scholar

Rodgers S.L., Cash J.N., Siddiq M., Ryser E.T. 2004. A comparison of different chemical sanitizers for inactivating Escherichia coli O157:H7 and Listeria monocytogenes in solution and on apples, lettuce, strawberries, and cantaloupe. Journal of Food Protection 67: 721–731. DOI: 10.4315/0362-028x-67.4.721.10.4315/0362-028X-67.4.721Search in Google Scholar

Saltveit M.E. 1998. Heat-shock and fresh cut lettuce. Perishables Handling Quarterly 95: 5–6. Sánchez-Moreno C. 2002. Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Science and Technology International 8: 121–137. DOI: 10.1106/108201302026770.10.1106/108201302026770Search in Google Scholar

Siomos A.S., Koukounaras A. 2007. Quality and postharvest physiology of rocket leaves. Fresh Produce 1(1): 59–65.Search in Google Scholar

Van der Sluis A.A., Dekker M., Skrede G., Jongen W.M.F. 2002. Activity and concentration of polyphenolic antioxidants in apple juice. 1. Effect of existing production methods. Journal of Agricultural and Food Chemistry 50 (25): 7211–7214. DOI: 10.1021/jf020115h.10.1021/jf020115h12452634Search in Google Scholar

Spadafora N.D., Amaro A.L., Pereira M.J., Müller C.T., Pintado M., Rogers H.J. 2016. Multi-trait analysis of post-harvest storage in rocket salad (Diplotaxis tenuifolia) links sensorial, volatile and nutritional data. Food Chemistry 211: 114–123. DOI: 10.1016/j.foodchem.2016.04.107.10.1016/j.foodchem.2016.04.10727283614Search in Google Scholar

StatSoft 2011. STATISTICA. Data analysis software system, v. 10. www.statsoft.comSearch in Google Scholar

Szwejda-Grzybowska J., Kosson R., Grzegorzewska M. 2016. The effect of short-term storage and the hot water treatment of fresh-cut pepper fruit cv. ‛Blondy F1’ and ‛Yecla F1’ on the content of bioactive compounds and antioxidant properties. Journal of Horticultural Research 24(2): 83–90. DOI: 10.1515/johr-2016-0024.10.1515/johr-2016-0024Search in Google Scholar

Vlachonasios K.E., Kadyrzhanova D.K., Dilley D.R. 2001. Heat treatment prevents chilling injury of tomato (Lycopersicon esculentum) fruits: heat shock genes and heat shock proteins in the resistance of tomato fruit to low temperatures. Acta Horticulturae 533: 543–547. DOI: 10.17660/acta-hortic.2001.553.126.10.17660/ActaHortic.2001.553.126Search in Google Scholar

eISSN:
2300-5009
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Life Sciences, Biotechnology, Plant Science, Ecology, other