Accesso libero

Analytical solute transport modeling of furrow fertigation using the STANMOD software package

, ,  e   
19 giu 2025
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Abbasi, F., Adamsen, F. J., Hunsaker, D. J., Feyen, J., Shouse, P., van Genuchten, M. T., 2003a. Effects of flow depth on water flow and solute transport in furrow irrigation: Field data analysis. Journal of Irrigation and Drainage Engineering, 129(4), 237–246. https://doi.org/10.1061/(ASCE)0733-9437(2003)129:4(237) Search in Google Scholar

Abbasi, F., Rezaee, H. T., Jolaini, M., Alizadeh, H. A., 2012. Evaluation of fertigation in different soils and furrow irrigation regimes. Irrigation and Drainage, 61(4), 533–541. https://doi.org/10.1002/ird.1646 Search in Google Scholar

Abbasi, F., Shooshtari, M. M., Feyen, J., 2003b. Evaluation of various surface irrigation numerical simulation models. Journal of Irrigation and Drainage Engineering, 129(3), 208–213. https://doi.org/10.1061/(ASCE)0733-9437(2003)129:3(208) Search in Google Scholar

Abbasi, F., Simunek, J., van Genuchten, M. T., Feyen, J., Adamsen, F. J., Hunsaker, D. J., Shouse, P., 2003c. Overland water flow and solute transport: Model development and field-data analysis. Journal of Irrigation and Drainage Engineering, 129(2), 71–81. https://doi.org/10.1061/(ASCE)0733-9437(2003)129:2(71) Search in Google Scholar

Adamsen, F. J., Hunsaker, D. J., Perea, H. U. G. O., 2005. Border strip fertigation: Effect of injection strategies on the distribution of bromide. Transactions of the ASAE, 48(2), 529–540. https://doi.org/10.13031/2013.18327 Search in Google Scholar

Akomolafe, O. J., Ghanbarian, B., Hyman, J. D., 2024. Fluid flow and solute transport simulations in tight geologic formations: Discrete fracture network and continuous time random walk analyses. Journal of Hydrology, 635, 131109. https://doi.org/10.1016/j.jhydrol.2024.131109 Search in Google Scholar

Alva, A. K., Mattos Jr, D., Quaggio, J. A., 2008. Advances in nitrogen fertigation of citrus. Journal of Crop Improvement, 22(1), 121–146. https://doi.org/10.1080/15427520802072967 Search in Google Scholar

Alva, A. K., Paramasivam, S., Fares, A., Delgado, J. A., Mattos Jr, D., Sajwan, K., 2006. Nitrogen and irrigation management practices to improve nitrogen uptake efficiency and minimize leaching losses. Journal of Crop Improvement, 15(2), 369–420. https://doi.org/10.1300/J411v15n02_11 Search in Google Scholar

Amiri, N., Nakhaei, M., 2024. Evaluating the potential of treated municipal wastewater reuse in irrigation and groundwater recharge; 5-year contaminant transport modeling. International Journal of Environmental Science and Technology, 21(1), 577–602. https://doi.org/10.1007/s13762-023-05293-x Search in Google Scholar

Balkhi, A., Ebrahimian, H., Ghameshlou, A. N., Amini, M., 2023. Modeling of nitrate and ammonium leaching and crop uptake under wastewater application considering nitrogen cycle in the soil. Modeling Earth Systems and Environment, 9(1), 901–911. https://doi.org/10.1007/s40808-022-01546-9 Search in Google Scholar

Bencala, K. E., 1983. Simulation of solute transport in a mountain pool‐and‐riffle stream with a kinetic mass transfer model for sorption. Water resources research, 19(3), 732–738. https://doi.org/10.1029/WR019i003p00732 Search in Google Scholar

Bencala, K. E., Walters, R. A., 1983. Simulation of solute transport in a mountain pool‐and‐riffle stream: A transient storage model. Water Resources Research, 19(3), 718–724. https://doi.org/10.1029/wr019i003p00718 Search in Google Scholar

Biggar, J. W., Nielsen, D. R., 1964. Chloride‐36 diffusion during stable and unstable flow through glass beads. Soil Science Society of America Journal, 28(5), 591–595. https://doi.org/10.2136/sssaj1964.03615995002800050008x Search in Google Scholar

Bristow, K. L., Šimůnek, J., Helalia, S. A., Siyal, A. A., 2020. Numerical simulations of the effects furrow surface conditions and fertilizer locations have on plant nitrogen and water use in furrow irrigated systems. Agricultural Water Management, 232, 106044. https://doi.org/10.1016/j.agwat.2020.106044 Search in Google Scholar

Brunetti, G., Šimůnek, J., Bautista, E., 2018. A hybrid finite volume-finite element model for the numerical analysis of furrow irrigation and fertigation. Computers and Electronics in Agriculture, 150, 312–327. https://doi.org/10.1016/j.compag.2018.05.013 Search in Google Scholar

Cherrey, K. D., Flury, M., Harsh, J. B., 2003. Nitrate and colloid transport through coarse Hanford sediments under steady state, variably saturated flow. Water Resources Research, 39(6). https://doi.org/10.1029/2002WR001944 Search in Google Scholar

Cong, W., Zhang, X., Feng, Y., 2011. Transport of selenium and its modeling through one dimensional saturated soil columns. African J of Agric Res, 6(8), 2002–2009. https://doi.org/10.5897/AJAR10.1081 Search in Google Scholar

De Smedt, F., Brevis, W., Debels, P., 2005. Analytical solution for solute transport resulting from instantaneous injection in streams with transient storage. Journal of Hydrology, 315, 25–39. https://doi.org/10.1016/j.jhydrol.2005.04.002 Search in Google Scholar

Ebrahimian, H., Keshavarz, M. R., Playán, E., 2014. Surface fertigation: a review, gaps and needs. Spanish Journal of Agricultural Research, 12(3), 820–837. https://doi.org/10.5424/sjar/2014123-5393 Search in Google Scholar

Ebrahimian, H., Liaghat, A., Parsinejad, M., Playán, E., Abbasi, F., Navabian, M., 2013. Simulation of 1D surface and 2D subsurface water flow and nitrate transport in alternate and conventional furrow fertigation. Irrigation Science, 31, 301–316. https://doi.org/10.1007/s00271-011-0303-3 Search in Google Scholar

Esfandiari, M., Maheshwari, B. L., 1997. Field values of the shape factor for estimating surface storage in furrows on a clay soil. Irrigation Science, 17, 157–161. https://doi.org/10.1007/s002710050034 Search in Google Scholar

Ewaid, S. H., Abed, S. A., Al-Ansari, N., 2019. Crop water requirements and irrigation schedules for some major crops in Southern Iraq. Water, 11(4), 756. https://doi.org/10.3390/w11040756 Search in Google Scholar

García-Navarro, P., Playán, E., Zapata, N., 2000. Solute transport modeling in overland flow applied to fertigation. Journal of Irrigation and Drainage Engineering, 126(1), 33–40. https://doi.org/10.1061/(ASCE)0733-9437(2000)126:1(33) Search in Google Scholar

Gelhar, L. W., Welty, C., Rehfeldt, K. R., 1992. A critical review of data on field‐scale dispersion in aquifers. Water Resources Research, 28(7), 1955–1974. https://doi.org/10.1029/92WR00607 Search in Google Scholar

Ghanbarian, B., Ebrahimian, H., Hunt, A. G., van Genuchten, M. T., 2018. Theoretical bounds for the exponent in the empirical power-law advance-time curve for surface flow. Agricultural Water Management, 210, 208–216. https://doi.org/10.1016/j.agwat.2018.08.010 Search in Google Scholar

Ghanbarian, B., Mehmani, Y., Berkowitz, B., 2023. Effect of pore‐wall roughness and Péclet number on conservative solute transport in saturated porous media. Water Resources Research, 59(2), e2022WR033119. https://doi.org/10.1029/2022WR033119 Search in Google Scholar

Ghanbarian-Alavijeh, B., Skinner, T. E., Hunt, A. G., 2012. Saturation dependence of dispersion in porous media. Physical Review E, 86(6), 066316. https://doi.org/10.1103/PhysRevE.86.066316 Search in Google Scholar

Gillies, M. H., Foley, J. P., McCarthy, A. C., 2018. Improving surface irrigation. In Advances in Agricultural Machinery and Technologies (pp. 225–261). CRC Press. Search in Google Scholar

Groenveld, T., Argaman, A., Šimůnek, J., Lazarovitch, N., 2021. Numerical modeling to optimize nitrogen fertigation with consideration of transient drought and nitrogen stress. Agricultural Water Management, 254, 106971. https://doi.org/10.1016/j.agwat.2021.106971 Search in Google Scholar

Homaee, M., Dirksen, C., Feddes, R. A., 2002. Simulation of root water uptake: I. Non-uniform transient salinity using different macroscopic reduction functions. Agricultural Water Management, 57(2), 89–109. https://doi.org/10.1016/S0378-3774(02)00072-0 Search in Google Scholar

Huang, G., Huang, Q., Zhan, H., 2006. Evidence of one-dimensional scale-dependent fractional advection– dispersion. Journal of Contaminant Hydrology, 85(1–2), 53–71. https://doi.org/10.1016/j.jconhyd.2005.12.007 Search in Google Scholar

Hunt, A. G., Skinner, T. E., Ewing, R. P., Ghanbarian-Alavijeh, B. 2011. Dispersion of solutes in porous media. The European Physical Journal B, 80, 411–432. https://doi.org/10.1140/epjb/e2011-10805-y Search in Google Scholar

Jackson, T. R., Apte, S. V., Haggerty, R., 2014. Effect of multiple lateral cavities on stream solute transport under non-Fickian conditions and at the Fickian asymptote. Journal of Hydrology, 519, 1707–1722. https://doi.org/10.1016/j.jhydrol.2014.09.036 Search in Google Scholar

Khashaei, F., Behmanesh, J., Rezaverdinejad, V., Azad, N. 2023. Field evaluation and numerical simulation of water and nitrate transport in subsurface drip irrigation of corn using HYDRUS-2D. Irrigation Science, 1–26. https://doi.org/10.1007/s00271-023-00890-7 Search in Google Scholar

Krause, P., Boyle, D. P., Bäse, F., 2005. Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences, 5, 89–97. https://doi.org/10.5194/adgeo-5-89-2005,2005. Search in Google Scholar

Liang, S., Chu, Q., Ashrafi, A., Zhao, Z., Liu, X., Liu, S., Yang, B., Li, D., He, P., Cao, L., Sha, Z., Chen, C., 2025. Agricultural practices influence phosphorus transport and ecosystem health in rice-paddy systems: Insights from HYDRUS-1D simulations. Agriculture, Ecosystems & Environment, 385, 109581. https://doi.org/10.1016/j.agee.2025.109581 Search in Google Scholar

Loague, K., Green, R. E., 1991. Statistical and graphical methods for evaluating solute transport models: overview and application. Journal of Contaminant Hydrology, 7(1–2), 51–73. https://doi.org/10.1016/0169-7722(91)90038-3 Search in Google Scholar

Lu, B., Zhang, Y., Zheng, C., Green, C. T., O’Neill, C., Sun, H. G., Qian, J., 2018. Comparison of time nonlocal transport models for characterizing non-Fickian transport: From mathematical interpretation to laboratory application. Water, 10(6), 778. https://doi.org/10.3390/w10060778 Search in Google Scholar

Maarefi, T., Ashrafi, A., Ebrahimian, H., Dehghanisanij, H., Sharifi, M., 2024. Water-food-energy nexus assessment for major agricultural crops and different irrigation methods of Lake Urmia basin, Iran. Water International, 49(1), 80–103. https://doi.org/10.1080/02508060.2024.2311533 Search in Google Scholar

Marquardt, D. W., 1963. An algorithm for least-squares estimation of nonlinear parameters. Journal of the society for Industrial and Applied Mathematics, 11(2), 431–441. https://doi.org/10.1137/0111030 Search in Google Scholar

Moradi, G., Mehdinejadiani, B., 2020. An experimental study on scale dependency of fractional dispersion coefficient. Arabian Journal of Geosciences, 13, 1–13. https://doi.org/10.1007/s12517-020-05438-z Search in Google Scholar

Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., Veith, T. L., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900. https://doi.org/10.13031/2013.23153 Search in Google Scholar

Moriasi, D. N., Gitau, M. W., Pai, N., Daggupati, P., 2015. Hydrologic and water quality models: Performance measures and evaluation criteria. Transactions of the ASABE, 58(6), 1763–1785. https://doi.org/10.13031/trans.58.10715 Search in Google Scholar

Moritani, S., Saito, H., Win, P. W., Kohgo, Y., 2021. Assessment of potential groundwater contamination by ground source heat pump operation using solute transport models. International Journal of Energy and Environmental Engineering, 12, 1–10. https://doi.org/10.1007/s40095-020-00360-2 Search in Google Scholar

Ojaghlou, H., Sohrabi, T., Abbasi, F., Javani, H., 2020. Development and evaluation of a water flow and solute transport model for furrow fertigation with surge flow. Irrigation and Drainage, 69(4), 682–695. https://doi.org/10.1002/ird.2478 Search in Google Scholar

Parker, J. C., van Genuchten, M. T., 1984. Determining transport parameters from laboratory and field tracer experiments. Bull. 84–3. Virginia Agric. Exp. Stn., Blacksburg. Search in Google Scholar

Perea, H., Bautista, E., Hunsaker, D. J., Strelkoff, T. S., Williams, C., Adamsen, F. J., 2011. Nonuniform and unsteady solute transport in furrow irrigation. II: Description of field experiments and calibration of infiltration and roughness coefficients. Journal of Irrigation and Drainage Engineering, 137(5), 315–326. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000295 Search in Google Scholar

Perea, H., Strelkoff, T. S., Adamsen, F. J., Hunsaker, D. J., Clemmens, A. J., 2010. Nonuniform and unsteady solute transport in furrow irrigation. I: Model development. Journal of Irrigation and Drainage Engineering, 136(6), 365–375. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000106 Search in Google Scholar

Perea-Estrada, H., 2005. Development, verification, and evaluation of a solute transport model in surface irrigation. The University of Arizona. Search in Google Scholar

Pietrzak, D., Kania, J., Kmiecik, E., Wątor, K., 2019. Identification of transport parameters of chlorides in different soils on the basis of column studies. Geologos, 25(3), 225–229. https://doi.org/10.2478/logos-2019-0024 Search in Google Scholar

Playán, E., Faci, J. M., 1997. Border fertigation: Field experiments and a simple model. Irrigation Science, 17, 163–171. https://doi.org/10.1007/s002710050035 Search in Google Scholar

Runkel, R. L., 1998. One-dimensional transport with inflow and storage (OTIS): A solute transport model for streams and rivers. USGS Water Resources Investigations Report 98–4018, U.S. Geological Survey, Denver, CO. http://co.water.usgs.gov/otis/ Search in Google Scholar

Sahimi, M., Heiba, A. A., Davis, H. T., Scriven, L. E., 1986a. Dispersion in flow through porous media—II. Two-phase flow. Chemical Engineering Science, 41(8), 2123–2136. https://doi.org/10.1016/0009-2509(86)87129-9 Search in Google Scholar

Sahimi, M., Hughes, B. D., Scriven, L. E., Davis, H. T., 1986b. Dispersion in flow through porous media—I. One-phase flow. Chemical Engineering Science, 41(8), 2103-2122. https://doi.org/10.1016/0009-2509(86)87128-7 Search in Google Scholar

Sharmiladevi, R., Ravikumar, V., 2021. Simulation of nitrogen fertigation schedule for drip irrigated paddy. Agricultural Water Management, 252, 106841. https://doi.org/10.1016/j.agwat.2021.106841 Search in Google Scholar

Šimůnek, J., van Genuchten, M. T., 2016. Contaminant transport in the unsaturated zone: Theory and modeling. In The handbook of groundwater engineering (pp. 221–254). CRC Press. Search in Google Scholar

Šimůnek, J., G. Brunetti, D. Jacques, M. Th. van Genuchten, M. Šejna, M., 2024. Developments and applications of the HYDRUS computer software packages since 2016. Vadose Zone Journal, 23(1), e20310. https://doi.org/10.1002/vzj2.20310 Search in Google Scholar

Šimůnek, J., van Genuchten, M. T., Šejna, M., 2012. HYDRUS: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1263–1274. https://doi.org/10.13031/2013.42239 Search in Google Scholar

Šimůnek, J., van Genuchten, M. T., Šejna, M. 2016. Recent developments and applications of the HYDRUS computer software packages. Vadose Zone Journal, 15(7). https://doi.org/10.2136/vzj2016.04.0033 Search in Google Scholar

Šimůnek, J., van Genuchten, M. T., Sejna, M., Toride, N., Leij, F. J., 1999. The STANMOD computer software for evaluating solute transport in porous media using analytical solutions of convection-dispersion equation. Versions 1.0 and 2.0. Rep. IGWMC-TPS, 71, 32. Search in Google Scholar

Soroush, F., Mostafazadeh-Fard, B., Mousavi, S. F., Abbasi, F., 2012. Solute distribution uniformity and fertilizer losses under meandering and standard furrow irrigation methods. Australian Journal of Crop Science, 6(5), 884–890. https://search.informit.org/doi/10.3316/informit.733047964008195 Search in Google Scholar

Strelkoff, T. S., Clemmens, A. J., Perea-Estrada, H., 2006. Calculation of non-reactive chemical distribution in surface fertigation. Agricultural Water Management, 86(1-2), 93–101. https://doi.org/10.1016/j.agwat.2006.07.006 Search in Google Scholar

Sun, L., Qiu, H., Niu, J., Hu, B. X., Kelly, J. F., Bolster, D., Phanikumar, M. S., 2020. Comparison of negative skewed space fractional models with time nonlocal approaches for stream solute transport modeling. Journal of Hydrology, 582, 124504. https://doi.org/10.1016/j.jhydrol.2019.124504 Search in Google Scholar

Taha, A. M., 2022. Fertigation: A Pathway to Sustainable Food Production: Basics and Applications. Springer Nature. https://doi.org/10.1007/978-3-031-05596-6 Search in Google Scholar

Toride, N., Leij, F. J., Van Genuchten, M. T., 1999. The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments, version 2.1. US Salinity Laboratory. CA. Research Rep, 137. Search in Google Scholar

Toride, N., Leij, F. J., van Genuchten, M. Th., 1995. The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments (Vol. 2). Riverside, CA: US Salinity Laboratory. Search in Google Scholar

van Genuchten, M. Th., 1982. Analytical solutions of the one-dimensional convective-dispersive solute transport equation (No. 1661). US Department of Agriculture, Agricultural Research Service. https://doi.org/10.22004/ag.econ.157268 Search in Google Scholar

van Genuchten, M. Th., Leij, F. J., Skaggs, T. H., Toride, N., Bradford, S. A., Pontedeiro, E. M., 2013a. Exact analytical solutions for contaminant transport in rivers, 1. The equilibrium advection-dispersion equation. Journal of Hydrology and Hydromechanics. 61(2):146–160, https://doi.org/10.2478/johh-2013-0020 Search in Google Scholar

van Genuchten, M. Th., Šimůnek, J., Leij, F. J., Toride, N., Šejna, M., 2012. STANMOD: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1355–1366. https://doi.org/10.13031/2013.42247 Search in Google Scholar

van Genuchten, M.Th., F.J. Leij, T.H. Skaggs, N. Toride, Bradford, S.A., Pontedeiro E.M., 2013b. Exact analytical solutions for contaminant transport in rivers. 2. Transient storage and decay chain solutions. Journal of Hydrology and Hydromechanics, 61(3): 250–259, https://doi:10.2478/johh-2013-0032 Search in Google Scholar

Vanderborght, J., Vereecken, H., 2007. Review of dispersivities for transport modeling in soils. Vadose Zone Journal, 6(1), 29–52. https://doi.org/10.2136/vzj2006.0096 Search in Google Scholar

Walker, W. R., Skogerboe, G. V., 1987. Surface irrigation. Theory and practice. Prentice-Hall. Inc., Englewood Cliffs, New Jersey 386 p. Search in Google Scholar

Wang, S., Liu, T., Yang, J., Wu, C., Zhang, H., 2023. Simulation Effect of Water and Nitrogen Transport under Wide Ridge and Furrow Irrigation in Winter Wheat Using HYDRUS-2D. Agronomy, 13(2), 457. https://doi.org/10.3390/agronomy13020457 Search in Google Scholar

Yang, J. M., Yang, J. Y., Liu, S., Hoogenboom, G., 2014. An evaluation of the statistical methods for testing the performance of crop models with observed data. Agricultural Systems, 127, 81–89. https://doi.org/10.1016/j.agsy.2014.01.008 Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Ingegneria, Introduzioni e rassegna, Ingegneria, altro