[
Abbasi, F., Adamsen, F. J., Hunsaker, D. J., Feyen, J., Shouse, P., van Genuchten, M. T., 2003a. Effects of flow depth on water flow and solute transport in furrow irrigation: Field data analysis. Journal of Irrigation and Drainage Engineering, 129(4), 237–246. https://doi.org/10.1061/(ASCE)0733-9437(2003)129:4(237)
]Search in Google Scholar
[
Abbasi, F., Rezaee, H. T., Jolaini, M., Alizadeh, H. A., 2012. Evaluation of fertigation in different soils and furrow irrigation regimes. Irrigation and Drainage, 61(4), 533–541. https://doi.org/10.1002/ird.1646
]Search in Google Scholar
[
Abbasi, F., Shooshtari, M. M., Feyen, J., 2003b. Evaluation of various surface irrigation numerical simulation models. Journal of Irrigation and Drainage Engineering, 129(3), 208–213. https://doi.org/10.1061/(ASCE)0733-9437(2003)129:3(208)
]Search in Google Scholar
[
Abbasi, F., Simunek, J., van Genuchten, M. T., Feyen, J., Adamsen, F. J., Hunsaker, D. J., Shouse, P., 2003c. Overland water flow and solute transport: Model development and field-data analysis. Journal of Irrigation and Drainage Engineering, 129(2), 71–81. https://doi.org/10.1061/(ASCE)0733-9437(2003)129:2(71)
]Search in Google Scholar
[
Adamsen, F. J., Hunsaker, D. J., Perea, H. U. G. O., 2005. Border strip fertigation: Effect of injection strategies on the distribution of bromide. Transactions of the ASAE, 48(2), 529–540. https://doi.org/10.13031/2013.18327
]Search in Google Scholar
[
Akomolafe, O. J., Ghanbarian, B., Hyman, J. D., 2024. Fluid flow and solute transport simulations in tight geologic formations: Discrete fracture network and continuous time random walk analyses. Journal of Hydrology, 635, 131109. https://doi.org/10.1016/j.jhydrol.2024.131109
]Search in Google Scholar
[
Alva, A. K., Mattos Jr, D., Quaggio, J. A., 2008. Advances in nitrogen fertigation of citrus. Journal of Crop Improvement, 22(1), 121–146. https://doi.org/10.1080/15427520802072967
]Search in Google Scholar
[
Alva, A. K., Paramasivam, S., Fares, A., Delgado, J. A., Mattos Jr, D., Sajwan, K., 2006. Nitrogen and irrigation management practices to improve nitrogen uptake efficiency and minimize leaching losses. Journal of Crop Improvement, 15(2), 369–420. https://doi.org/10.1300/J411v15n02_11
]Search in Google Scholar
[
Amiri, N., Nakhaei, M., 2024. Evaluating the potential of treated municipal wastewater reuse in irrigation and groundwater recharge; 5-year contaminant transport modeling. International Journal of Environmental Science and Technology, 21(1), 577–602. https://doi.org/10.1007/s13762-023-05293-x
]Search in Google Scholar
[
Balkhi, A., Ebrahimian, H., Ghameshlou, A. N., Amini, M., 2023. Modeling of nitrate and ammonium leaching and crop uptake under wastewater application considering nitrogen cycle in the soil. Modeling Earth Systems and Environment, 9(1), 901–911. https://doi.org/10.1007/s40808-022-01546-9
]Search in Google Scholar
[
Bencala, K. E., 1983. Simulation of solute transport in a mountain pool‐and‐riffle stream with a kinetic mass transfer model for sorption. Water resources research, 19(3), 732–738. https://doi.org/10.1029/WR019i003p00732
]Search in Google Scholar
[
Bencala, K. E., Walters, R. A., 1983. Simulation of solute transport in a mountain pool‐and‐riffle stream: A transient storage model. Water Resources Research, 19(3), 718–724. https://doi.org/10.1029/wr019i003p00718
]Search in Google Scholar
[
Biggar, J. W., Nielsen, D. R., 1964. Chloride‐36 diffusion during stable and unstable flow through glass beads. Soil Science Society of America Journal, 28(5), 591–595. https://doi.org/10.2136/sssaj1964.03615995002800050008x
]Search in Google Scholar
[
Bristow, K. L., Šimůnek, J., Helalia, S. A., Siyal, A. A., 2020. Numerical simulations of the effects furrow surface conditions and fertilizer locations have on plant nitrogen and water use in furrow irrigated systems. Agricultural Water Management, 232, 106044. https://doi.org/10.1016/j.agwat.2020.106044
]Search in Google Scholar
[
Brunetti, G., Šimůnek, J., Bautista, E., 2018. A hybrid finite volume-finite element model for the numerical analysis of furrow irrigation and fertigation. Computers and Electronics in Agriculture, 150, 312–327. https://doi.org/10.1016/j.compag.2018.05.013
]Search in Google Scholar
[
Cherrey, K. D., Flury, M., Harsh, J. B., 2003. Nitrate and colloid transport through coarse Hanford sediments under steady state, variably saturated flow. Water Resources Research, 39(6). https://doi.org/10.1029/2002WR001944
]Search in Google Scholar
[
Cong, W., Zhang, X., Feng, Y., 2011. Transport of selenium and its modeling through one dimensional saturated soil columns. African J of Agric Res, 6(8), 2002–2009. https://doi.org/10.5897/AJAR10.1081
]Search in Google Scholar
[
De Smedt, F., Brevis, W., Debels, P., 2005. Analytical solution for solute transport resulting from instantaneous injection in streams with transient storage. Journal of Hydrology, 315, 25–39. https://doi.org/10.1016/j.jhydrol.2005.04.002
]Search in Google Scholar
[
Ebrahimian, H., Keshavarz, M. R., Playán, E., 2014. Surface fertigation: a review, gaps and needs. Spanish Journal of Agricultural Research, 12(3), 820–837. https://doi.org/10.5424/sjar/2014123-5393
]Search in Google Scholar
[
Ebrahimian, H., Liaghat, A., Parsinejad, M., Playán, E., Abbasi, F., Navabian, M., 2013. Simulation of 1D surface and 2D subsurface water flow and nitrate transport in alternate and conventional furrow fertigation. Irrigation Science, 31, 301–316. https://doi.org/10.1007/s00271-011-0303-3
]Search in Google Scholar
[
Esfandiari, M., Maheshwari, B. L., 1997. Field values of the shape factor for estimating surface storage in furrows on a clay soil. Irrigation Science, 17, 157–161. https://doi.org/10.1007/s002710050034
]Search in Google Scholar
[
Ewaid, S. H., Abed, S. A., Al-Ansari, N., 2019. Crop water requirements and irrigation schedules for some major crops in Southern Iraq. Water, 11(4), 756. https://doi.org/10.3390/w11040756
]Search in Google Scholar
[
García-Navarro, P., Playán, E., Zapata, N., 2000. Solute transport modeling in overland flow applied to fertigation. Journal of Irrigation and Drainage Engineering, 126(1), 33–40. https://doi.org/10.1061/(ASCE)0733-9437(2000)126:1(33)
]Search in Google Scholar
[
Gelhar, L. W., Welty, C., Rehfeldt, K. R., 1992. A critical review of data on field‐scale dispersion in aquifers. Water Resources Research, 28(7), 1955–1974. https://doi.org/10.1029/92WR00607
]Search in Google Scholar
[
Ghanbarian, B., Ebrahimian, H., Hunt, A. G., van Genuchten, M. T., 2018. Theoretical bounds for the exponent in the empirical power-law advance-time curve for surface flow. Agricultural Water Management, 210, 208–216. https://doi.org/10.1016/j.agwat.2018.08.010
]Search in Google Scholar
[
Ghanbarian, B., Mehmani, Y., Berkowitz, B., 2023. Effect of pore‐wall roughness and Péclet number on conservative solute transport in saturated porous media. Water Resources Research, 59(2), e2022WR033119. https://doi.org/10.1029/2022WR033119
]Search in Google Scholar
[
Ghanbarian-Alavijeh, B., Skinner, T. E., Hunt, A. G., 2012. Saturation dependence of dispersion in porous media. Physical Review E, 86(6), 066316. https://doi.org/10.1103/PhysRevE.86.066316
]Search in Google Scholar
[
Gillies, M. H., Foley, J. P., McCarthy, A. C., 2018. Improving surface irrigation. In Advances in Agricultural Machinery and Technologies (pp. 225–261). CRC Press.
]Search in Google Scholar
[
Groenveld, T., Argaman, A., Šimůnek, J., Lazarovitch, N., 2021. Numerical modeling to optimize nitrogen fertigation with consideration of transient drought and nitrogen stress. Agricultural Water Management, 254, 106971. https://doi.org/10.1016/j.agwat.2021.106971
]Search in Google Scholar
[
Homaee, M., Dirksen, C., Feddes, R. A., 2002. Simulation of root water uptake: I. Non-uniform transient salinity using different macroscopic reduction functions. Agricultural Water Management, 57(2), 89–109. https://doi.org/10.1016/S0378-3774(02)00072-0
]Search in Google Scholar
[
Huang, G., Huang, Q., Zhan, H., 2006. Evidence of one-dimensional scale-dependent fractional advection– dispersion. Journal of Contaminant Hydrology, 85(1–2), 53–71. https://doi.org/10.1016/j.jconhyd.2005.12.007
]Search in Google Scholar
[
Hunt, A. G., Skinner, T. E., Ewing, R. P., Ghanbarian-Alavijeh, B. 2011. Dispersion of solutes in porous media. The European Physical Journal B, 80, 411–432. https://doi.org/10.1140/epjb/e2011-10805-y
]Search in Google Scholar
[
Jackson, T. R., Apte, S. V., Haggerty, R., 2014. Effect of multiple lateral cavities on stream solute transport under non-Fickian conditions and at the Fickian asymptote. Journal of Hydrology, 519, 1707–1722. https://doi.org/10.1016/j.jhydrol.2014.09.036
]Search in Google Scholar
[
Khashaei, F., Behmanesh, J., Rezaverdinejad, V., Azad, N. 2023. Field evaluation and numerical simulation of water and nitrate transport in subsurface drip irrigation of corn using HYDRUS-2D. Irrigation Science, 1–26. https://doi.org/10.1007/s00271-023-00890-7
]Search in Google Scholar
[
Krause, P., Boyle, D. P., Bäse, F., 2005. Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences, 5, 89–97. https://doi.org/10.5194/adgeo-5-89-2005,2005.
]Search in Google Scholar
[
Liang, S., Chu, Q., Ashrafi, A., Zhao, Z., Liu, X., Liu, S., Yang, B., Li, D., He, P., Cao, L., Sha, Z., Chen, C., 2025. Agricultural practices influence phosphorus transport and ecosystem health in rice-paddy systems: Insights from HYDRUS-1D simulations. Agriculture, Ecosystems & Environment, 385, 109581. https://doi.org/10.1016/j.agee.2025.109581
]Search in Google Scholar
[
Loague, K., Green, R. E., 1991. Statistical and graphical methods for evaluating solute transport models: overview and application. Journal of Contaminant Hydrology, 7(1–2), 51–73. https://doi.org/10.1016/0169-7722(91)90038-3
]Search in Google Scholar
[
Lu, B., Zhang, Y., Zheng, C., Green, C. T., O’Neill, C., Sun, H. G., Qian, J., 2018. Comparison of time nonlocal transport models for characterizing non-Fickian transport: From mathematical interpretation to laboratory application. Water, 10(6), 778. https://doi.org/10.3390/w10060778
]Search in Google Scholar
[
Maarefi, T., Ashrafi, A., Ebrahimian, H., Dehghanisanij, H., Sharifi, M., 2024. Water-food-energy nexus assessment for major agricultural crops and different irrigation methods of Lake Urmia basin, Iran. Water International, 49(1), 80–103. https://doi.org/10.1080/02508060.2024.2311533
]Search in Google Scholar
[
Marquardt, D. W., 1963. An algorithm for least-squares estimation of nonlinear parameters. Journal of the society for Industrial and Applied Mathematics, 11(2), 431–441. https://doi.org/10.1137/0111030
]Search in Google Scholar
[
Moradi, G., Mehdinejadiani, B., 2020. An experimental study on scale dependency of fractional dispersion coefficient. Arabian Journal of Geosciences, 13, 1–13. https://doi.org/10.1007/s12517-020-05438-z
]Search in Google Scholar
[
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., Veith, T. L., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900. https://doi.org/10.13031/2013.23153
]Search in Google Scholar
[
Moriasi, D. N., Gitau, M. W., Pai, N., Daggupati, P., 2015. Hydrologic and water quality models: Performance measures and evaluation criteria. Transactions of the ASABE, 58(6), 1763–1785. https://doi.org/10.13031/trans.58.10715
]Search in Google Scholar
[
Moritani, S., Saito, H., Win, P. W., Kohgo, Y., 2021. Assessment of potential groundwater contamination by ground source heat pump operation using solute transport models. International Journal of Energy and Environmental Engineering, 12, 1–10. https://doi.org/10.1007/s40095-020-00360-2
]Search in Google Scholar
[
Ojaghlou, H., Sohrabi, T., Abbasi, F., Javani, H., 2020. Development and evaluation of a water flow and solute transport model for furrow fertigation with surge flow. Irrigation and Drainage, 69(4), 682–695. https://doi.org/10.1002/ird.2478
]Search in Google Scholar
[
Parker, J. C., van Genuchten, M. T., 1984. Determining transport parameters from laboratory and field tracer experiments. Bull. 84–3. Virginia Agric. Exp. Stn., Blacksburg.
]Search in Google Scholar
[
Perea, H., Bautista, E., Hunsaker, D. J., Strelkoff, T. S., Williams, C., Adamsen, F. J., 2011. Nonuniform and unsteady solute transport in furrow irrigation. II: Description of field experiments and calibration of infiltration and roughness coefficients. Journal of Irrigation and Drainage Engineering, 137(5), 315–326. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000295
]Search in Google Scholar
[
Perea, H., Strelkoff, T. S., Adamsen, F. J., Hunsaker, D. J., Clemmens, A. J., 2010. Nonuniform and unsteady solute transport in furrow irrigation. I: Model development. Journal of Irrigation and Drainage Engineering, 136(6), 365–375. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000106
]Search in Google Scholar
[
Perea-Estrada, H., 2005. Development, verification, and evaluation of a solute transport model in surface irrigation. The University of Arizona.
]Search in Google Scholar
[
Pietrzak, D., Kania, J., Kmiecik, E., Wątor, K., 2019. Identification of transport parameters of chlorides in different soils on the basis of column studies. Geologos, 25(3), 225–229. https://doi.org/10.2478/logos-2019-0024
]Search in Google Scholar
[
Playán, E., Faci, J. M., 1997. Border fertigation: Field experiments and a simple model. Irrigation Science, 17, 163–171. https://doi.org/10.1007/s002710050035
]Search in Google Scholar
[
Runkel, R. L., 1998. One-dimensional transport with inflow and storage (OTIS): A solute transport model for streams and rivers. USGS Water Resources Investigations Report 98–4018, U.S. Geological Survey, Denver, CO. http://co.water.usgs.gov/otis/
]Search in Google Scholar
[
Sahimi, M., Heiba, A. A., Davis, H. T., Scriven, L. E., 1986a. Dispersion in flow through porous media—II. Two-phase flow. Chemical Engineering Science, 41(8), 2123–2136. https://doi.org/10.1016/0009-2509(86)87129-9
]Search in Google Scholar
[
Sahimi, M., Hughes, B. D., Scriven, L. E., Davis, H. T., 1986b. Dispersion in flow through porous media—I. One-phase flow. Chemical Engineering Science, 41(8), 2103-2122. https://doi.org/10.1016/0009-2509(86)87128-7
]Search in Google Scholar
[
Sharmiladevi, R., Ravikumar, V., 2021. Simulation of nitrogen fertigation schedule for drip irrigated paddy. Agricultural Water Management, 252, 106841. https://doi.org/10.1016/j.agwat.2021.106841
]Search in Google Scholar
[
Šimůnek, J., van Genuchten, M. T., 2016. Contaminant transport in the unsaturated zone: Theory and modeling. In The handbook of groundwater engineering (pp. 221–254). CRC Press.
]Search in Google Scholar
[
Šimůnek, J., G. Brunetti, D. Jacques, M. Th. van Genuchten, M. Šejna, M., 2024. Developments and applications of the HYDRUS computer software packages since 2016. Vadose Zone Journal, 23(1), e20310. https://doi.org/10.1002/vzj2.20310
]Search in Google Scholar
[
Šimůnek, J., van Genuchten, M. T., Šejna, M., 2012. HYDRUS: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1263–1274. https://doi.org/10.13031/2013.42239
]Search in Google Scholar
[
Šimůnek, J., van Genuchten, M. T., Šejna, M. 2016. Recent developments and applications of the HYDRUS computer software packages. Vadose Zone Journal, 15(7). https://doi.org/10.2136/vzj2016.04.0033
]Search in Google Scholar
[
Šimůnek, J., van Genuchten, M. T., Sejna, M., Toride, N., Leij, F. J., 1999. The STANMOD computer software for evaluating solute transport in porous media using analytical solutions of convection-dispersion equation. Versions 1.0 and 2.0. Rep. IGWMC-TPS, 71, 32.
]Search in Google Scholar
[
Soroush, F., Mostafazadeh-Fard, B., Mousavi, S. F., Abbasi, F., 2012. Solute distribution uniformity and fertilizer losses under meandering and standard furrow irrigation methods. Australian Journal of Crop Science, 6(5), 884–890. https://search.informit.org/doi/10.3316/informit.733047964008195
]Search in Google Scholar
[
Strelkoff, T. S., Clemmens, A. J., Perea-Estrada, H., 2006. Calculation of non-reactive chemical distribution in surface fertigation. Agricultural Water Management, 86(1-2), 93–101. https://doi.org/10.1016/j.agwat.2006.07.006
]Search in Google Scholar
[
Sun, L., Qiu, H., Niu, J., Hu, B. X., Kelly, J. F., Bolster, D., Phanikumar, M. S., 2020. Comparison of negative skewed space fractional models with time nonlocal approaches for stream solute transport modeling. Journal of Hydrology, 582, 124504. https://doi.org/10.1016/j.jhydrol.2019.124504
]Search in Google Scholar
[
Taha, A. M., 2022. Fertigation: A Pathway to Sustainable Food Production: Basics and Applications. Springer Nature. https://doi.org/10.1007/978-3-031-05596-6
]Search in Google Scholar
[
Toride, N., Leij, F. J., Van Genuchten, M. T., 1999. The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments, version 2.1. US Salinity Laboratory. CA. Research Rep, 137.
]Search in Google Scholar
[
Toride, N., Leij, F. J., van Genuchten, M. Th., 1995. The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments (Vol. 2). Riverside, CA: US Salinity Laboratory.
]Search in Google Scholar
[
van Genuchten, M. Th., 1982. Analytical solutions of the one-dimensional convective-dispersive solute transport equation (No. 1661). US Department of Agriculture, Agricultural Research Service. https://doi.org/10.22004/ag.econ.157268
]Search in Google Scholar
[
van Genuchten, M. Th., Leij, F. J., Skaggs, T. H., Toride, N., Bradford, S. A., Pontedeiro, E. M., 2013a. Exact analytical solutions for contaminant transport in rivers, 1. The equilibrium advection-dispersion equation. Journal of Hydrology and Hydromechanics. 61(2):146–160, https://doi.org/10.2478/johh-2013-0020
]Search in Google Scholar
[
van Genuchten, M. Th., Šimůnek, J., Leij, F. J., Toride, N., Šejna, M., 2012. STANMOD: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1355–1366. https://doi.org/10.13031/2013.42247
]Search in Google Scholar
[
van Genuchten, M.Th., F.J. Leij, T.H. Skaggs, N. Toride, Bradford, S.A., Pontedeiro E.M., 2013b. Exact analytical solutions for contaminant transport in rivers. 2. Transient storage and decay chain solutions. Journal of Hydrology and Hydromechanics, 61(3): 250–259, https://doi:10.2478/johh-2013-0032
]Search in Google Scholar
[
Vanderborght, J., Vereecken, H., 2007. Review of dispersivities for transport modeling in soils. Vadose Zone Journal, 6(1), 29–52. https://doi.org/10.2136/vzj2006.0096
]Search in Google Scholar
[
Walker, W. R., Skogerboe, G. V., 1987. Surface irrigation. Theory and practice. Prentice-Hall. Inc., Englewood Cliffs, New Jersey 386 p.
]Search in Google Scholar
[
Wang, S., Liu, T., Yang, J., Wu, C., Zhang, H., 2023. Simulation Effect of Water and Nitrogen Transport under Wide Ridge and Furrow Irrigation in Winter Wheat Using HYDRUS-2D. Agronomy, 13(2), 457. https://doi.org/10.3390/agronomy13020457
]Search in Google Scholar
[
Yang, J. M., Yang, J. Y., Liu, S., Hoogenboom, G., 2014. An evaluation of the statistical methods for testing the performance of crop models with observed data. Agricultural Systems, 127, 81–89. https://doi.org/10.1016/j.agsy.2014.01.008
]Search in Google Scholar