Accesso libero

Biochar blended with sheep manure and biogas station residue in different ratios can significantly influence soil properties

, , ,  e   
05 mar 2025
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Ahlawat, V., Dadarwal, R.S., Yadav, P.K., Chaudhary, K., 2023. Effects of long-term nutrient management practices on physicochemical properties of soils: A review. Pharm. Innov. J., 12, 491–496. Search in Google Scholar

Angin, I., Kuru, M., Erinc, F., 2020. The effect of biochar amendment on soil properties and tomato yield. Sustain. Agric. Res., 9, 94–104. Search in Google Scholar

Are, K.S., 2019. Biochar and soils physical health. In: Abrol, V., Sharma, P. (Eds.): An Imperative Amendment for Soil and the Environment. IntechOpen, Rijeka, Croatia, pp. 21–33. Search in Google Scholar

Balashov, E., Buchkina, N., Šimanský, V., Horák, J., 2021. Effects of slow and fast pyrolysis biochar on N2O emissions and water availability of sandy and clayey loam soils with high water-filled pore space. J. Hydrol. Hydromech., 69, 467–474. Search in Google Scholar

Birk, J.J., de Goede, R.G.M., Schouten, J., 2017. Indicators of soil quality: Effects of management practices. Agr. Ecosyst. Environ., 241, 39–48. Search in Google Scholar

Blanco-Canqui, H., 2021. Does biochar application alleviate soil compaction? Review and data synthesis. Geoderma, 404, 115317. Search in Google Scholar

Botková, N., Vitková, J., Šurda, P., Massas, I., Zafeiriou, I., Gaduš, J., Rodrigues, F.C., Borges, P.F.S., 2023. Impact of biochar particle size and feedstock type on hydro-physical properties of sandy soil. J. Hydrol. Hydromech., 71, 345–355. Search in Google Scholar

Cao, X., Ma, L., Harris, W., 2017. The effect of different types of biochar on agricultural productivity. Agron. J., 109, 2922–2932. Search in Google Scholar

Chacón, F.J., Cayuela, M.L., Roig, A., Sánchez-Monedro, M.A., 2017. Understanding, measuring and tuning the electrochemical properties of biochar for environmental applications. Rev. Environ. Sci. Biotechnol., 16, 695–715. Search in Google Scholar

Fecenko, J., Ložek, O., 2000. Nutrition and Fertilization of Field Crops. SAU, Nitra, Slovakia, 442 p. (In Slovak). Search in Google Scholar

Gabhi, R., Basile, L., Kirk, D.W., Giorcelli, M., Tagliaferro, A., Jia, Ch.Q., 2020. Electrical conductivity of wood biochar monoliths and its dependence on pyrolysis temperature. Biochar, 2, 369–378. Search in Google Scholar

García, M., Ocampo, J.A., Patiño, M., 2018. Effects of organic amendments on soil quality and the yield of several crops. Agron. J., 110, 1158–1167. Search in Google Scholar

Githinji, L., Karanja, N., Kinyua, M., 2020. Biochar for improved soil health and crop production: A review. J. Soil Sci. Plant Nut., 20, 1–22. Search in Google Scholar

Graham, P.H., Draeger, K.J., Ferrey, M.L., Conroy, M.J., Hammer, B.E., Martinez, E., Aarons, S.R., Quinto, C., 1994. Acid pH tolerance in strains of Rhizobium and Bradyrhizobium, and initial studies on the basis for acid tolerance of Rhizobium tropici UMR1899. Can. J. Microbiol., 40, 198–207. Search in Google Scholar

Gupta, V.V., Germida, J.J., 2015. Soil aggregation: influence on microbial biomass and implications for biological processes. Soil Biol. Biochem., 80, A3–A9. Search in Google Scholar

Hanes, J., 1999. Analyzes of Sorptive Characteristics, SSCRI, Bratislava, Slovakia, 138 p. (In Slovak). Search in Google Scholar

Havlin, J.L., Beaton, J.D., Tisdale, S.L., Nelson, W.L., 2017. Soil Fertility and Fertilizers: An Introduction to Nutrient Management. Pearson, 520 p. Search in Google Scholar

Horák, J., 2015. Testing biochar as a possible way to ameliorate slightly acidic soil at the research field located in the Danubian Lowland. Acta Hort. Regiotec., 18, 20–24. Search in Google Scholar

Horák, J., Šimanský, V., 2017. Effect of biochar on soil CO2 production. Acta Fytotech. Zootech., 20, 72–77. Search in Google Scholar

Horák, J., Šimanský, V., Aydin, E., Igaz, D., Buchkina, N., Balashov, E., 2020. Effects of biochar combined with N-fertilization on soil CO2 emisssion, crop yields and relationships with soil properties. Pol. J. Environ. Stud., 29, 5, 3597–3609. Search in Google Scholar

Hrivňáková, K., Makovníková, J., Barančíková, G., Bezák, P., Bezáková, Z., Dodok, R., Grečo, V., Chlpík, J., Kobza, J., Lištjak, M., Mališ, J., Píš, V., Schlosserová, J., Slávik, O., Styk, J., Širáň, M., 2011. Uniform Methods of Soil Analyses, VÚPOP, Bratislava, Slovakia, 112 p. (In Slovak). Search in Google Scholar

Igaz, D., Šimanský, V., Horák, J., Kondrlová, E., Domanová, J., Rodný, M., Buchkina, N.P., 2018. Can a single dose of biochar affect selected soil physical and chemical characteristics? J. Hydrol. Hydromech., 66, 421–428. Search in Google Scholar

Jeffery, S., Verheijen, F.G.A., van der Velde, M., Bastos, A.C., 2011. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agr. Ecosyst. Environ., 144, 175–187. Search in Google Scholar

Jia, X., Yuan, W., Ju, X., 2015. Short report: effects of biochar addition on manure composting and associated N2O emissions. J. Sustain. Bioenergy Syst., 5, 56–61. Search in Google Scholar

IBI, 2015. State of the biochar industry 2015, A snapshot of commercial activity in the biochar sector. In: IBI-STD-0.1-1, International Biochar Initiative, accessed at. IBI-State-of-the-Industry-2015-final.pdf, Accessed date: 30 November 2024. Jolliffe, I.T., Cadima, J., 2016. Principal component analysis: A review and recent developments. Philos. T. R. Soc. A: Math. Phys. Eng. Sci., 374, 20150202. Search in Google Scholar

Jones, A., Brown, C., 2020. Soil salinity management: Implications for crop production. Agric. Sci., 11, 314–324. Search in Google Scholar

Juriga, M., Aydin, E., Horák, J., Chlpík, J., Rizhiya, E.Y., Buchkina, N.P., Balashov, E.V., Šimanský, V., 2021. The Importance of initial application and reapplication of biochar in the context of soil structure improvement. J. Hydrol. Hydromech., 69, 87–97. Search in Google Scholar

Juriga, M., Šimanský, V., 2018. Effect of biochar on soil structure – review. Acta Fytotech. Zootech., 21, 11–19. Search in Google Scholar

Kováčik, P., Ryant, P., 2024. Agrochemistry, Principles and Practice. SPU, Nitra, Slovakia, 385 p. (In Slovak). Search in Google Scholar

Kumar, A., Mani, M., Tripathi, V., 2019. Effect of soil amendment with organic matter on the physical and chemical properties of soil. J. Soil Sci. Plant Nut., 19, 557–580. Search in Google Scholar

Lehmann, J., Joseph, S., 2015. Biochar for Environmental Management. Routledge, Taylor & Francis Group, London, New York, 928 p. Search in Google Scholar

Lehmann, J., Rillig, M.C., Thies, J., Masiell, C.A., Hockaday, W.C., Crowley D., 2011. Biochar effects on soil biota, A review. Soil Biol. Biochem., 43, 1812–1836. Search in Google Scholar

Major, J., 2013. Practical aspects of biochar application to tree crops. In: IBI Technical Bulletin. International Biochar Initiative, pp. 102. Search in Google Scholar

Mao, J., Liu, M., Xu, J., Wang, W., Chen, H., 2019. Effects of long-term application of manure and digestate on soil microbial communities. Sci. Total Environ., 654, 832–841. Search in Google Scholar

Matsumoto, T., 2021. Biochar in sustainable agriculture: Assessment of types and applications. Agric. Sci. Rev., 13, 45–58. Search in Google Scholar

Meng, L., Li, W., Zhang, S., Zhang, X., Zhao, Y., Chen, L., 2021. Improving sewage sludge compost process and quality by carbon sources addition. Sci. Rep., 11, 1319. Search in Google Scholar

Ng, C.W.W., Touyon, L., Bordoloi, S., 2023. Influence of biochar on improving hydrological and nutrient status of two decomposed soils for yield of medicinal plant – Pinellia ternata. J. Hydrol. Hydromech., 71, 156–168. Search in Google Scholar

Ratzke, C., Gore, J., 2019. Modifying and reacting to the environmental pH can drive bacterial interactions. PLoS Biol., 16, e2004248. Search in Google Scholar

Ritchie, G.S.P., Dolling, P.J., 1985.The role of organic matter in soil acidification. Aust. J. Soil Res., 23, 569–576. Search in Google Scholar

Rončák, P., Németová, Z., Vitková, J., Danáčová, M., Toková, L., Aydin, E., Valent, P., Honek, D., Igaz, D., 2023. Effects of the application of biochar on the soil erosion of plots of sloping agricultural and with silt loam soil. J. Hydrol. Hydromech., 71, 356–368. Search in Google Scholar

Schmidt, H.P., Wilk, N., 2019. Effects of biochar on soil properties and plant growth: A review. Plant Soil, 442, 297–311. Search in Google Scholar

Shackley, S., Ruysschaert, G., Zwart, K., Glaser, B., 2016. Biochar in European Soils and Agriculture, Science and Practice. Routledge, London, New York, 301 p. Search in Google Scholar

Shah, S.A., Shukla, M.K., 2020. Exploring soil salinity: Implications for plant growth and ecosystem health. Soil Sci. Soc. Am. J., 84, 1122–1140. Search in Google Scholar

Sharma, A., Soni, R., Soni, S.K., 2024. From waste to wealth: exploring modern composting innovations and compost valorization. J. Mater. Cycles Waste Manag., 26, 20–48. Search in Google Scholar

Shen, Z., 2024. Biochar Application in Soil to Immobilize Heavy Metals, Fundamentals and Case Studies. Elsevier, Amsterdam, Netherlands, 252 p. Search in Google Scholar

Šimanský, V., 2016. Effects of biochar and biochar with nitrogen on soil organic matter and soil structure in Haplic Luvisol. Acta Fytotech. Zootech., 19, 129–138. Search in Google Scholar

Šimanský, V., Aydin, E., Igaz, D., Horák, J., 2020. Potential application of biochar depends mainly on its profits for farmers: case study in Slovakia. Agriculture, 66, 171–176. Search in Google Scholar

Šimanský, V., Horák, J., Bordoloi, S., 2022. Improving the soil physical properties and relationships between soil properties in arable soils of contrasting texture enhancement using biochar substrates. Geoderma Reg., 28, e443. Search in Google Scholar

Šimanský, V., Igaz, D., Horák, J., Šurda, P., Kolenčík, M., Buchkina, N.P., Uzarowicz, L., Juriga, M., Šrank, D., Pauková, Ž., 2018. Response of soil organic matter and water-stable aggregates to different biochar treatments including nitrogen fertilization. J. Hydrol. Hydromech., 66, 429–436. Search in Google Scholar

Šimanský, V., Juriga, M., Golian, M., Šlosár, M., Provazník, M., 2021. Soil structure as a significant indirect factor affecting crop yields. Acta Fytotech. Zootech., 24, 129–136. Search in Google Scholar

Šimanský, V., Polláková, N., Chlpík, J., Kolenčík, M., 2023. Soil Science. SPU, Nitra, Slovakia, 398 p. (In Slovak). Search in Google Scholar

Šimanský, V., Šrank, D., Juriga, M., 2019. Differences in soil properties and crop yields after application of biochar blended with farmyard manure in sandy and loamy soils. Acta Fytotech. Zootech., 22, 21–25. Search in Google Scholar

Simeonov, L.S., Konstantinov, A.A., Petkov, P., 2010. The Role of organic matter in the movement of nutrients in soil. Geoderma, 154, 295–305. Search in Google Scholar

Smith, P., House, J.I., Bustamante, M., Sobocká, J., Harper, R., Pan, G., West, P.C., Clark, J.M., Adhya, T., Rumpel, C., Paustian, K., Kuikman, P., Cotrufo, M.F., Elliott, J.A., McDowell, R., Griffiths, R.I., Asakawa, S., Bondeau, A., Jain, A.K., Meersmans, J., Pugh, T.A.M., 2016. Global change pressures on soils from land use and management. Glob. Chang. Biol., 22, 1008–1028. Search in Google Scholar

Šrank, D., Šimanský, V., 2020. Differences in soil organic matter and humus of sandy soil after application of biochar substrates and combination of biochar substrates with mineral fertilizers. Acta Fytotech. Zootech., 23, 117–124. Search in Google Scholar

Usman, A.R., Ahmad, M., El-Mahrouky, M., Al-Omran, A., Ok, Y.S., Sallam, A.S., El-Naggar, A.H., Al-Wabel, M.I., 2015. Chemically modified biochar produced from conocarpus waste increases NO3 removal from aqueous solutions. Environ. Geochem. Health, 38, 511–521. Search in Google Scholar

Wang, Y., Wang, J., Wang, J., Jiang, L., Liu, H., 2018. Effects of organic amendments on soil microbial activity and community structure. Environ. Sci. Pollut. Res., 25, 10667–10678. Search in Google Scholar

Weber, J., 2020. Humic substances and their role in the environment. EC Agric., 1, 3–8. Search in Google Scholar

Yan, F., Schubert, S., Mengel, K., 1996. Soil pH increase due to biological decarboxylation of organic anions. Soil Biol. Biochem., 28, 617–624. Search in Google Scholar

Yuan, J., Xu, R., Qian, W., Wang, R., 2011. Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars. J. Soil Sediment., 11, 741–750. Search in Google Scholar

Zifcakova, L., 2020. Factors affecting soil microbial processes. In: Datta, R., Meena, R.S., Pathan, S.I., Ceccherini, M.T. (Eds.): Carbon and Nitrogen Cycling in Soil. Springer, Berlin, pp. 439–461. Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Ingegneria, Introduzioni e rassegna, Ingegneria, altro