[
Ahlawat, V., Dadarwal, R.S., Yadav, P.K., Chaudhary, K., 2023. Effects of long-term nutrient management practices on physicochemical properties of soils: A review. Pharm. Innov. J., 12, 491–496.
]Search in Google Scholar
[
Angin, I., Kuru, M., Erinc, F., 2020. The effect of biochar amendment on soil properties and tomato yield. Sustain. Agric. Res., 9, 94–104.
]Search in Google Scholar
[
Are, K.S., 2019. Biochar and soils physical health. In: Abrol, V., Sharma, P. (Eds.): An Imperative Amendment for Soil and the Environment. IntechOpen, Rijeka, Croatia, pp. 21–33.
]Search in Google Scholar
[
Balashov, E., Buchkina, N., Šimanský, V., Horák, J., 2021. Effects of slow and fast pyrolysis biochar on N2O emissions and water availability of sandy and clayey loam soils with high water-filled pore space. J. Hydrol. Hydromech., 69, 467–474.
]Search in Google Scholar
[
Birk, J.J., de Goede, R.G.M., Schouten, J., 2017. Indicators of soil quality: Effects of management practices. Agr. Ecosyst. Environ., 241, 39–48.
]Search in Google Scholar
[
Blanco-Canqui, H., 2021. Does biochar application alleviate soil compaction? Review and data synthesis. Geoderma, 404, 115317.
]Search in Google Scholar
[
Botková, N., Vitková, J., Šurda, P., Massas, I., Zafeiriou, I., Gaduš, J., Rodrigues, F.C., Borges, P.F.S., 2023. Impact of biochar particle size and feedstock type on hydro-physical properties of sandy soil. J. Hydrol. Hydromech., 71, 345–355.
]Search in Google Scholar
[
Cao, X., Ma, L., Harris, W., 2017. The effect of different types of biochar on agricultural productivity. Agron. J., 109, 2922–2932.
]Search in Google Scholar
[
Chacón, F.J., Cayuela, M.L., Roig, A., Sánchez-Monedro, M.A., 2017. Understanding, measuring and tuning the electrochemical properties of biochar for environmental applications. Rev. Environ. Sci. Biotechnol., 16, 695–715.
]Search in Google Scholar
[
Fecenko, J., Ložek, O., 2000. Nutrition and Fertilization of Field Crops. SAU, Nitra, Slovakia, 442 p. (In Slovak).
]Search in Google Scholar
[
Gabhi, R., Basile, L., Kirk, D.W., Giorcelli, M., Tagliaferro, A., Jia, Ch.Q., 2020. Electrical conductivity of wood biochar monoliths and its dependence on pyrolysis temperature. Biochar, 2, 369–378.
]Search in Google Scholar
[
García, M., Ocampo, J.A., Patiño, M., 2018. Effects of organic amendments on soil quality and the yield of several crops. Agron. J., 110, 1158–1167.
]Search in Google Scholar
[
Githinji, L., Karanja, N., Kinyua, M., 2020. Biochar for improved soil health and crop production: A review. J. Soil Sci. Plant Nut., 20, 1–22.
]Search in Google Scholar
[
Graham, P.H., Draeger, K.J., Ferrey, M.L., Conroy, M.J., Hammer, B.E., Martinez, E., Aarons, S.R., Quinto, C., 1994. Acid pH tolerance in strains of Rhizobium and Bradyrhizobium, and initial studies on the basis for acid tolerance of Rhizobium tropici UMR1899. Can. J. Microbiol., 40, 198–207.
]Search in Google Scholar
[
Gupta, V.V., Germida, J.J., 2015. Soil aggregation: influence on microbial biomass and implications for biological processes. Soil Biol. Biochem., 80, A3–A9.
]Search in Google Scholar
[
Hanes, J., 1999. Analyzes of Sorptive Characteristics, SSCRI, Bratislava, Slovakia, 138 p. (In Slovak).
]Search in Google Scholar
[
Havlin, J.L., Beaton, J.D., Tisdale, S.L., Nelson, W.L., 2017. Soil Fertility and Fertilizers: An Introduction to Nutrient Management. Pearson, 520 p.
]Search in Google Scholar
[
Horák, J., 2015. Testing biochar as a possible way to ameliorate slightly acidic soil at the research field located in the Danubian Lowland. Acta Hort. Regiotec., 18, 20–24.
]Search in Google Scholar
[
Horák, J., Šimanský, V., 2017. Effect of biochar on soil CO2 production. Acta Fytotech. Zootech., 20, 72–77.
]Search in Google Scholar
[
Horák, J., Šimanský, V., Aydin, E., Igaz, D., Buchkina, N., Balashov, E., 2020. Effects of biochar combined with N-fertilization on soil CO2 emisssion, crop yields and relationships with soil properties. Pol. J. Environ. Stud., 29, 5, 3597–3609.
]Search in Google Scholar
[
Hrivňáková, K., Makovníková, J., Barančíková, G., Bezák, P., Bezáková, Z., Dodok, R., Grečo, V., Chlpík, J., Kobza, J., Lištjak, M., Mališ, J., Píš, V., Schlosserová, J., Slávik, O., Styk, J., Širáň, M., 2011. Uniform Methods of Soil Analyses, VÚPOP, Bratislava, Slovakia, 112 p. (In Slovak).
]Search in Google Scholar
[
Igaz, D., Šimanský, V., Horák, J., Kondrlová, E., Domanová, J., Rodný, M., Buchkina, N.P., 2018. Can a single dose of biochar affect selected soil physical and chemical characteristics? J. Hydrol. Hydromech., 66, 421–428.
]Search in Google Scholar
[
Jeffery, S., Verheijen, F.G.A., van der Velde, M., Bastos, A.C., 2011. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agr. Ecosyst. Environ., 144, 175–187.
]Search in Google Scholar
[
Jia, X., Yuan, W., Ju, X., 2015. Short report: effects of biochar addition on manure composting and associated N2O emissions. J. Sustain. Bioenergy Syst., 5, 56–61.
]Search in Google Scholar
[
IBI, 2015. State of the biochar industry 2015, A snapshot of commercial activity in the biochar sector. In: IBI-STD-0.1-1, International Biochar Initiative, accessed at. IBI-State-of-the-Industry-2015-final.pdf, Accessed date: 30 November 2024. Jolliffe, I.T., Cadima, J., 2016. Principal component analysis: A review and recent developments. Philos. T. R. Soc. A: Math. Phys. Eng. Sci., 374, 20150202.
]Search in Google Scholar
[
Jones, A., Brown, C., 2020. Soil salinity management: Implications for crop production. Agric. Sci., 11, 314–324.
]Search in Google Scholar
[
Juriga, M., Aydin, E., Horák, J., Chlpík, J., Rizhiya, E.Y., Buchkina, N.P., Balashov, E.V., Šimanský, V., 2021. The Importance of initial application and reapplication of biochar in the context of soil structure improvement. J. Hydrol. Hydromech., 69, 87–97.
]Search in Google Scholar
[
Juriga, M., Šimanský, V., 2018. Effect of biochar on soil structure – review. Acta Fytotech. Zootech., 21, 11–19.
]Search in Google Scholar
[
Kováčik, P., Ryant, P., 2024. Agrochemistry, Principles and Practice. SPU, Nitra, Slovakia, 385 p. (In Slovak).
]Search in Google Scholar
[
Kumar, A., Mani, M., Tripathi, V., 2019. Effect of soil amendment with organic matter on the physical and chemical properties of soil. J. Soil Sci. Plant Nut., 19, 557–580.
]Search in Google Scholar
[
Lehmann, J., Joseph, S., 2015. Biochar for Environmental Management. Routledge, Taylor & Francis Group, London, New York, 928 p.
]Search in Google Scholar
[
Lehmann, J., Rillig, M.C., Thies, J., Masiell, C.A., Hockaday, W.C., Crowley D., 2011. Biochar effects on soil biota, A review. Soil Biol. Biochem., 43, 1812–1836.
]Search in Google Scholar
[
Major, J., 2013. Practical aspects of biochar application to tree crops. In: IBI Technical Bulletin. International Biochar Initiative, pp. 102.
]Search in Google Scholar
[
Mao, J., Liu, M., Xu, J., Wang, W., Chen, H., 2019. Effects of long-term application of manure and digestate on soil microbial communities. Sci. Total Environ., 654, 832–841.
]Search in Google Scholar
[
Matsumoto, T., 2021. Biochar in sustainable agriculture: Assessment of types and applications. Agric. Sci. Rev., 13, 45–58.
]Search in Google Scholar
[
Meng, L., Li, W., Zhang, S., Zhang, X., Zhao, Y., Chen, L., 2021. Improving sewage sludge compost process and quality by carbon sources addition. Sci. Rep., 11, 1319.
]Search in Google Scholar
[
Ng, C.W.W., Touyon, L., Bordoloi, S., 2023. Influence of biochar on improving hydrological and nutrient status of two decomposed soils for yield of medicinal plant – Pinellia ternata. J. Hydrol. Hydromech., 71, 156–168.
]Search in Google Scholar
[
Ratzke, C., Gore, J., 2019. Modifying and reacting to the environmental pH can drive bacterial interactions. PLoS Biol., 16, e2004248.
]Search in Google Scholar
[
Ritchie, G.S.P., Dolling, P.J., 1985.The role of organic matter in soil acidification. Aust. J. Soil Res., 23, 569–576.
]Search in Google Scholar
[
Rončák, P., Németová, Z., Vitková, J., Danáčová, M., Toková, L., Aydin, E., Valent, P., Honek, D., Igaz, D., 2023. Effects of the application of biochar on the soil erosion of plots of sloping agricultural and with silt loam soil. J. Hydrol. Hydromech., 71, 356–368.
]Search in Google Scholar
[
Schmidt, H.P., Wilk, N., 2019. Effects of biochar on soil properties and plant growth: A review. Plant Soil, 442, 297–311.
]Search in Google Scholar
[
Shackley, S., Ruysschaert, G., Zwart, K., Glaser, B., 2016. Biochar in European Soils and Agriculture, Science and Practice. Routledge, London, New York, 301 p.
]Search in Google Scholar
[
Shah, S.A., Shukla, M.K., 2020. Exploring soil salinity: Implications for plant growth and ecosystem health. Soil Sci. Soc. Am. J., 84, 1122–1140.
]Search in Google Scholar
[
Sharma, A., Soni, R., Soni, S.K., 2024. From waste to wealth: exploring modern composting innovations and compost valorization. J. Mater. Cycles Waste Manag., 26, 20–48.
]Search in Google Scholar
[
Shen, Z., 2024. Biochar Application in Soil to Immobilize Heavy Metals, Fundamentals and Case Studies. Elsevier, Amsterdam, Netherlands, 252 p.
]Search in Google Scholar
[
Šimanský, V., 2016. Effects of biochar and biochar with nitrogen on soil organic matter and soil structure in Haplic Luvisol. Acta Fytotech. Zootech., 19, 129–138.
]Search in Google Scholar
[
Šimanský, V., Aydin, E., Igaz, D., Horák, J., 2020. Potential application of biochar depends mainly on its profits for farmers: case study in Slovakia. Agriculture, 66, 171–176.
]Search in Google Scholar
[
Šimanský, V., Horák, J., Bordoloi, S., 2022. Improving the soil physical properties and relationships between soil properties in arable soils of contrasting texture enhancement using biochar substrates. Geoderma Reg., 28, e443.
]Search in Google Scholar
[
Šimanský, V., Igaz, D., Horák, J., Šurda, P., Kolenčík, M., Buchkina, N.P., Uzarowicz, L., Juriga, M., Šrank, D., Pauková, Ž., 2018. Response of soil organic matter and water-stable aggregates to different biochar treatments including nitrogen fertilization. J. Hydrol. Hydromech., 66, 429–436.
]Search in Google Scholar
[
Šimanský, V., Juriga, M., Golian, M., Šlosár, M., Provazník, M., 2021. Soil structure as a significant indirect factor affecting crop yields. Acta Fytotech. Zootech., 24, 129–136.
]Search in Google Scholar
[
Šimanský, V., Polláková, N., Chlpík, J., Kolenčík, M., 2023. Soil Science. SPU, Nitra, Slovakia, 398 p. (In Slovak).
]Search in Google Scholar
[
Šimanský, V., Šrank, D., Juriga, M., 2019. Differences in soil properties and crop yields after application of biochar blended with farmyard manure in sandy and loamy soils. Acta Fytotech. Zootech., 22, 21–25.
]Search in Google Scholar
[
Simeonov, L.S., Konstantinov, A.A., Petkov, P., 2010. The Role of organic matter in the movement of nutrients in soil. Geoderma, 154, 295–305.
]Search in Google Scholar
[
Smith, P., House, J.I., Bustamante, M., Sobocká, J., Harper, R., Pan, G., West, P.C., Clark, J.M., Adhya, T., Rumpel, C., Paustian, K., Kuikman, P., Cotrufo, M.F., Elliott, J.A., McDowell, R., Griffiths, R.I., Asakawa, S., Bondeau, A., Jain, A.K., Meersmans, J., Pugh, T.A.M., 2016. Global change pressures on soils from land use and management. Glob. Chang. Biol., 22, 1008–1028.
]Search in Google Scholar
[
Šrank, D., Šimanský, V., 2020. Differences in soil organic matter and humus of sandy soil after application of biochar substrates and combination of biochar substrates with mineral fertilizers. Acta Fytotech. Zootech., 23, 117–124.
]Search in Google Scholar
[
Usman, A.R., Ahmad, M., El-Mahrouky, M., Al-Omran, A., Ok, Y.S., Sallam, A.S., El-Naggar, A.H., Al-Wabel, M.I., 2015. Chemically modified biochar produced from conocarpus waste increases NO3 removal from aqueous solutions. Environ. Geochem. Health, 38, 511–521.
]Search in Google Scholar
[
Wang, Y., Wang, J., Wang, J., Jiang, L., Liu, H., 2018. Effects of organic amendments on soil microbial activity and community structure. Environ. Sci. Pollut. Res., 25, 10667–10678.
]Search in Google Scholar
[
Weber, J., 2020. Humic substances and their role in the environment. EC Agric., 1, 3–8.
]Search in Google Scholar
[
Yan, F., Schubert, S., Mengel, K., 1996. Soil pH increase due to biological decarboxylation of organic anions. Soil Biol. Biochem., 28, 617–624.
]Search in Google Scholar
[
Yuan, J., Xu, R., Qian, W., Wang, R., 2011. Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars. J. Soil Sediment., 11, 741–750.
]Search in Google Scholar
[
Zifcakova, L., 2020. Factors affecting soil microbial processes. In: Datta, R., Meena, R.S., Pathan, S.I., Ceccherini, M.T. (Eds.): Carbon and Nitrogen Cycling in Soil. Springer, Berlin, pp. 439–461.
]Search in Google Scholar