Accesso libero

Uncertainty analysis of discharge coefficient predicted for rectangular side weir using machine learning methods

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Abbasi, S., Fatemi, S., Ghaderi, A., Di Francesco, S., 2021. The effect of geometric parameters of the antivortex on a triangular labyrinth side weir. Water, 13, 1. http://dx.doi.org/10.3390/w13010014 Search in Google Scholar

Agaccioglu, H., Yüksel, Y., 1998. Side-weir flow in curved channels. J. Irrig. Drain. Eng., 124, 3, 163–175. http://dx.doi.org/10.1061/(ASCE)0733-9437(1998)124:3(163) Search in Google Scholar

Ahmed, M.H., Lin, L.-S., 2021. Dissolved oxygen concentration predictions for running waters with different land use land cover using a quantile regression forest machine learning technique. J. Hydrol., 597, 1–12. http://dx.doi.org/10.1016/j.jhydrol.2021.126213 Search in Google Scholar

Akbari, M., Salmasi, F., Arvanaghi, H., Karbasi, M., Farsadizadeh, D., 2019. Application of Gaussian process regression model to predict discharge coefficient of gated piano key weir. Water Resour. Manage., 33, 11, 3929–3947. http://dx.doi.org/10.1007/s11269-019-02343-3 Search in Google Scholar

Anandhi, A., Srinivas, V.V., Nanjundiah, R.S., Nagesh Kumar, D., 2008. Downscaling precipitation to river basin in India for IPCC SRES scenarios using support vector machine. International Journal of Climatology, 28, 3, 401–420. http://dx.doi.org/https://doi.org/10.1002/joc.1529 Search in Google Scholar

Azamathulla, H.M., Haghiabi, A.H., Parsaie, A., 2016. Prediction of side weir discharge coefficient by support vector machine technique. Water Supply, 16, 4, 1002–1016. http://dx.doi.org/10.2166/ws.2016.014 Search in Google Scholar

Bagheri, S., Kabiri-Samani, A.R., Heidarpour, M., 2014. Discharge coefficient of rectangular sharp-crested side weirs. Part II: Domínguez’s method. Flow Meas. Instrum., 35, 116–121. http://dx.doi.org/10.1016/j.flowmeasinst.2013.10.006. Search in Google Scholar

Bhuiyan, M.A.E., Nikolopoulos, E.I., Anagnostou, E.N., Quintana-Seguí, P., Barella-Ortiz, A., 2018. A nonparametric statistical technique for combining global precipitation datasets: development and hydrological evaluation over the Iberian Peninsula. Hydrol. Earth Syst. Sci., 22, 2, 1371–1389. http://dx.doi.org/10.5194/hess-22-1371-2018 Search in Google Scholar

Bonakdari, H., Ebtehaj, I., Samui, P., Gharabaghi, B., 2019. Lake Water-Level fluctuations forecasting using Minimax Probability Machine Regression, Relevance Vector Machine, Gaussian Process Regression, and Extreme Learning Machine. Water Resour. Manage., 33, 11, 3965–3984. http://dx.doi.org/10.1007/s11269-019-02346-0 Search in Google Scholar

Bonakdari, H., Zaji, A.H., Shamshirband, S., Hashim, R., Petkovic, D., 2015. Sensitivity analysis of the discharge coefficient of a modified triangular side weir by adaptive neuro-fuzzy methodology. Meas., 73, 74–81. http://dx.doi.org/10.1016/j.measurement.2015.05.021 Search in Google Scholar

Borghei, S.M., Jalili, M.R., Ghodsian, M., 1999. Discharge coefficient for sharp-crested side weir in subcritical flow. J. Hydraul. Eng., 125, 10, 1051–1056. http://dx.doi.org/10.1061/(ASCE)0733-9429(1999)125:10(1051) Search in Google Scholar

Borghei, S.M., Nekooie, M.A., Sadeghian, H., Jalili Ghazizadeh, M.R., 2013. Triangular labyrinth side weirs with one and two cycles. Proc. Inst. Civ. Eng. Water Manage., 166, 1, 27–42. http://dx.doi.org/10.1680/wama.11.00032 Search in Google Scholar

Bowden, G.J., Maier, H.R., Dandy, G.C., 2005. Input determination for neural network models in water resources applications. Part 2. Case study: forecasting salinity in a river. J. Hydrol., 301, 1, 93–107. http://dx.doi.org/10.1016/j.jhydrol.2004.06.020 Search in Google Scholar

Brabanter, K.D., Brabanter, J.D., Suykens, J.A.K., Moor, B.D., 2011. Approximate confidence and prediction intervals for least squares support vector regression. IEEE Trans. Neural Networks, 22, 1, 110–120. http://dx.doi.org/10.1109/TNN.2010.2087769 Search in Google Scholar

Breiman, L., 2001. Random forests. Mach. Learn., 45, 1, 5–32. http://dx.doi.org/10.1023/A:1010933404324 Search in Google Scholar

Cartwright, H.M., 2015. Artificial Neural Networks. Springer, New York. Search in Google Scholar

Cheong, H.F., 1991. Discharge coefficient of lateral diversion from trapezoidal channel. J. Irrig. Drain. Eng., 117, 4, 461–475. http://dx.doi.org/10.1061/(ASCE)0733-9437(1991)117:4(461) Search in Google Scholar

Coleman, H.W., Steele, W.G., 2009. Experimentation, Validation, and Uncertainty Analysis for Engineers. Wiley, New York, NY, USA. Search in Google Scholar

Cortes, C., Vapnik, V., 1995. Support-vector networks. Mach. Learn., 20, 3, 273–297. http://dx.doi.org/10.1007/BF00994018 Search in Google Scholar

Ebtehaj, I., Bonakdari, H., Gharabaghi, B., 2018. Development of more accurate discharge coefficient prediction equations for rectangular side weirs using adaptive neuro-fuzzy inference system and generalized group method of data handling. Meas., 116, 473–482. http://dx.doi.org/10.1016/j.measurement.2017.11.023 Search in Google Scholar

Ebtehaj, I., Bonakdari, H., Zaji, A.H., Azimi, H., Khoshbin, F., 2015. GMDH-type neural network approach for modeling the discharge coefficient of rectangular sharp-crested side weirs. Eng. Sci. Technol. Int. J., 18, 4, 746–757. http://dx.doi.org/10.1016/j.jestch.2015.04.012 Search in Google Scholar

Emiroglu, M.E., Agaccioglu, H., Kaya, N., 2011. Discharging capacity of rectangular side weirs in straight open channels. Flow Meas. Instrum., 22, 4, 319–330. http://dx.doi.org/10.1016/j.flowmeasinst.2011.04.003 Search in Google Scholar

Francke, T., López-Tarazón, J.A., Schröder, B., 2008. Estimation of suspended sediment concentration and yield using linear models, random forests and quantile regression forests. Hydrol. Process., 22, 25, 4892–4904. http://dx.doi.org/10.1002/hyp.7110 Search in Google Scholar

Gholami, A., Bonakdari, H., Ebtehaj, I., Mohammadian, M., Gharabaghi, B., Khodashenas, S.R., 2018. Uncertainty analysis of intelligent model of hybrid genetic algorithm and particle swarm optimization with ANFIS to predict threshold bank profile shape based on digital laser approach sensing. Meas., 121, 294–303. http://dx.doi.org/10.1016/j.measurement.2018.02.070 Search in Google Scholar

Granata, F., de Marinis, G., Gargano, R., Tricarico, C., 2013. Novel approach for side weirs in supercritical flow. J. Irrig. Drain. Eng., 139, 8, 672–679. http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000600 Search in Google Scholar

Haddadi, H., Rahimpour, M., 2012. A discharge coefficient for a trapezoidal broad-crested side weir in subcritical flow. Flow Meas. Instrum., 26, 63–67. http://dx.doi.org/10.1016/j.flowmeasinst.2012.04.002 Search in Google Scholar

Hager, W., 1987. Lateral outflow over side weirs. J. Hydraul. Eng., 113, 4, 491–504. http://dx.doi.org/10.1061/(ASCE)0733-9429(1987)113:4(491) Search in Google Scholar

Hu, Z., Karami, H., Rezaei, A., DadrasAjirlou, Y., Piran, M.J., Band, S.S., Chau, K.-W., Mosavi, A., 2021. Using soft computing and machine learning algorithms to predict the discharge coefficient of curved labyrinth overflows. Eng. Appl. Comput. Fluid Mech., 15, 1, 1002–1015. http://dx.doi.org/10.1080/19942060.2021.1934546 Search in Google Scholar

Hussain, A., Shariq, A., Danish, M., Ansari, M., 2021. Discharge coefficient estimation for rectangular side weir using GEP and GMDH methods. Adv. Comput. Des., 6, 2, 135–151. http://dx.doi.org/10.12989/acd.2021.6.2.135 Search in Google Scholar

Jalili, M.R., Borghei, S.M., 1996. Discussion: Discharge coefficient of rectangular side weirs. J. Irrig. Drain. Eng., 122, 2, 132–132. http://dx.doi.org/10.1061/(ASCE)0733-9437(1996)122:2(132) Search in Google Scholar

Johnson, P.A., Ayyub, B.M., 1996. Modeling uncertainty in prediction of pier scour. J. Hydraul. Eng., 122, 2, 66–72. http://dx.doi.org/10.1061/(ASCE)0733-9429(1996)122:2(66) Search in Google Scholar

Karbasi, M., Jamei, M., Ahmadianfar, I., Asadi, A., 2021. Toward the accurate estimation of elliptical side orifice discharge coefficient applying two rigorous kernel-based data-intelligence paradigms. Sci. Rep., 11, 1, 19784. http://dx.doi.org/10.1038/s41598-021-99166-3 Search in Google Scholar

Kaya, N., Emiroglu, M.E., Agaccioglu, H., 2011. Discharge coefficient of a semi-elliptical side weir in subcritical flow. Flow Meas. Instrum., 22, 1, 25–32. http://dx.doi.org/10.1016/j.flowmeasinst.2010.11.002 Search in Google Scholar

Kilic, Z., Emin Emiroglu, M., 2022. Study of hydraulic characteristics of trapezoidal piano key side weir using different approaches. Water Supply, 22, 8, 6672–6691. http://dx.doi.org/10.2166/ws.2022.264 Search in Google Scholar

Kisi, O., Ozkan, C., 2017. A new approach for modeling sedimentdischarge relationship: Local weighted linear regression. Water Resour. Manage., 31, 1, 1–23. http://dx.doi.org/10.1007/s11269-016-1481-9 Search in Google Scholar

Liao, K.-W., Chien, F.-S., Ju, R.-J., 2019. Safety evaluation of a water-immersed bridge against multiple hazards via machine learning. Appl. Sci., 9, 15, 3116. http://dx.doi.org/10.3390/app9153116 Search in Google Scholar

Liu, Y., Guo, J., Wang, Q., Huang, D., 2016. Prediction of filamentous sludge bulking using a state-based Gaussian processes regression model. Sci. Rep., 6, 1, 31303. http://dx.doi.org/10.1038/srep31303 Search in Google Scholar

Maranzoni, A., Pilotti, M., Tomirotti, M., 2017. Experimental and numerical analysis of side weir flows in a converging channel. J. Hydraul. Eng., 143, 7, 1–15. http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0001296 Search in Google Scholar

Meinshausen, N., Ridgeway, G., 2006. Quantile regression forests. J. Mach. Learn. Res., 7, 6, 983–999. Search in Google Scholar

Mohammed, A.Y., Golijanek-Jędrzejczyk, A., 2020. Estimating the uncertainty of discharge coefficient predicted for oblique side weir using Monte Carlo method. Flow Meas. Instrum., 73, 1–15. http://dx.doi.org/10.1016/j.flowmeasinst.2020.101727 Search in Google Scholar

Momeni, E., Dowlatshahi, M.B., Omidinasab, F., Maizir, H., Armaghani, D.J., 2020. Gaussian process regression technique to estimate the pile bearing capacity. Arabian J. Sci. Eng., 45, 10, 8255–8267. http://dx.doi.org/10.1007/s13369-020-04683-4 Search in Google Scholar

Nateghi, R., Guikema, S.D., Quiring, S.M., 2014. Forecasting hurricane-induced power outage durations. Nat. Hazard., 74, 3, 1795–1811. http://dx.doi.org/10.1007/s11069-014-1270-9 Search in Google Scholar

Nourani, B., Arvanaghi, H., Salmasi, F., 2021. A novel approach for estimation of discharge coefficient in broad-crested weirs based on Harris Hawks Optimization algorithm. Flow Meas. Instrum., 79, 1–13. http://dx.doi.org/10.1016/j.flowmeasinst.2021.101916 Search in Google Scholar

Olyaie, E., Banejad, H., Heydari, M., 2019. Estimating discharge coefficient of PK-weir under subcritical conditions based on high-accuracy machine learning approaches. Iran. J. Sci. Technol. Trans. Civ. Eng., 43, 1, 89–101. http://dx.doi.org/10.1007/s40996-018-0150-z Search in Google Scholar

Parsaie, A., Haghiabi, A., 2015. The effect of predicting discharge coefficient by neural network on increasing the numerical modeling accuracy of flow over side weir. Water Resour. Manage., 29, 4, 973–985. http://dx.doi.org/10.1007/s11269-014-0827-4 Search in Google Scholar

Parsaie, A., Haghiabi, A.H., 2021. Uncertainty analysis of discharge coefficient of circular crested weirs. Appl. Water Sci., 11, 2, 1–6. http://dx.doi.org/10.1007/s13201-020-01329-6 Search in Google Scholar

Pospíšilík, Š., Zachoval, Z., 2023. Discharge coefficient, effective head and limit head in the Kindsvater-Shen formula for small discharges measured by thin-plate weirs with a triangular notch. J. Hydrol. Hydromech., 71, 1, 35–48. http://dx.doi.org/doi:10.2478/johh-2022-0040 Search in Google Scholar

Prayogo, D., Susanto, Y.T.T., 2018. Optimizing the prediction accuracy of friction capacity of driven piles in cohesive soil using a novel self-tuning least squares support vector machine. Adv. Civ. Eng., 2018, 1–9. http://dx.doi.org/10.1155/2018/6490169 Search in Google Scholar

Ranga Raju Kittur, G., Gupta Sushil, K., Prasad, B., 1979. Side weir in rectangular channel. J. Hydraulics Div., 105, 5, 547–554. http://dx.doi.org/10.1061/JYCEAJ.0005207 Search in Google Scholar

Říha, J., Zachoval, Z., 2014. Discharge coefficient of a trapezoidal broad-crested side weir for low approach Froude numbers. J. Hydraul. Eng., 140, 8, 1–6. http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0000889 Search in Google Scholar

Říha, J., Zachoval, Z., 2015. Flow characteristics at trapezoidal broad-crested side weir. J. Hydrol. Hydromech., 63, 2, 164–171. http://dx.doi.org/10.1515/johh-2015-0026 Search in Google Scholar

Roushangar, K., Akhgar, S., 2020. Particle swarm optimizationbased LS-SVM for hydraulic performance of stepped spillway. ISH J. Hydraul. Eng., 26, 3, 273–282. http://dx.doi.org/10.1080/09715010.2018.1481773 Search in Google Scholar

Roy, M.-H., Larocque, D., 2019. Prediction intervals with random forests. Statistical Methods in Medical Research, 29, 1, 205–229. http://dx.doi.org/10.1177/0962280219829885 Search in Google Scholar

Salmasi, F., Nouri, M., Sihag, P., Abraham, J., 2021. Application of SVM, ANN, GRNN, RF, GP and RT models for predicting discharge coefficients of oblique sluice gates using experimental data. Water Supply, 21, 1, 232–248. http://dx.doi.org/10.2166/ws.2020.226 Search in Google Scholar

Schulz, E., Speekenbrink, M., Krause, A., 2018. A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions. J. Math. Psychol., 85, 1–16. http://dx.doi.org/10.1016/j.jmp.2018.03.001 Search in Google Scholar

Seyedian, S.M., Ghazizadeh, M.J., Tareghian, R., 2014. Determining side-weir discharge coefficient using Anfis. Proc. Inst. Civ. Eng. Water Manage., 167, 4, 230–237. http://dx.doi.org/10.1680/wama.12.00102 Search in Google Scholar

Seyedian, S.M., Rouhani, H., 2015. Assessing ANFIS accuracy in estimation of suspended sediments. Građevinar, 67, 12, 1165–1176. http://dx.doi.org/10.14256/JCE.1210.2015 Search in Google Scholar

Subramanya, K., Awasthy, S.C., 1972. Spatially varied flow over side-weirs. J. Hydraulics Div., 98, 1, 1–10. http://dx.doi.org/10.1061/JYCEAJ.0003188 Search in Google Scholar

Suykens, J.A.K., De Brabanter, J., Lukas, L., Vandewalle, J., 2002. Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing, 48, 1, 85–105. http://dx.doi.org/10.1016/S0925-2312(01)00644-0 Search in Google Scholar

Suykens, J.A.K., Vandewalle, J., 1999. Least squares support vector machine classifiers. Neural Process. Lett., 9, 3, 293–300. http://dx.doi.org/10.1023/A:1018628609742 Search in Google Scholar

Tao, H., Jamei, M., Ahmadianfar, I., Khedher, K.M., Farooque, A.A., Yaseen, Z.M., 2022. Discharge coefficient prediction of canal radial gate using neurocomputing models: an investigation of free and submerged flow scenarios. Eng. Appl. Comput. Fluid Mech., 16, 1, 1–19. http://dx.doi.org/10.1080/19942060.2021.2002721 Search in Google Scholar

Taylor, K.E., 2001. Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres, 106, D7, 7183–7192. http://dx.doi.org/10.1029/2000JD900719 Search in Google Scholar

Williams, C.K., Rasmussen, C.E., 2006. Gaussian Processes for Machine Learning. MIT Press, Cambridge, MA. Search in Google Scholar

Xiong, L., Wan, M., Wei, X., O’Connor, K.M., 2009. Indices for assessing the prediction bounds of hydrological models and application by generalised likelihood uncertainty estimation. Hydrol. Sci. J., 54, 5, 852–871. http://dx.doi.org/10.1623/hysj.54.5.852 Search in Google Scholar

Yadav, A., Hasan, M.K., Joshi, D., Kumar, V., Aman, A.H., Alhumyani, H., Alzaidi, M.S., Mishra, H., 2022. Optimized scenario for estimating suspended sediment yield using an artificial neural network coupled with a genetic algorithm. Water, 14, 18. http://dx.doi.org/10.3390/w14182815 Search in Google Scholar

Yi, T., Zheng, H., Tian, Y., Liu, J.-P., 2018. Intelligent prediction of transmission line project cost based on least squares support vector machine optimized by particle swarm optimization. Math. Probl. Eng., 2018, 1–12. http://dx.doi.org/10.1155/2018/5458696 Search in Google Scholar

Zhao, K., Popescu, S., Meng, X., Pang, Y., Agca, M., 2011. Characterizing forest canopy structure with lidar composite metrics and machine learning. Remote Sensing of Environment, 115, 8, 1978–1996. http://dx.doi.org/10.1016/j.rse.2011.04.001 Search in Google Scholar

Zounemat-Kermani, M., Golestani Kermani, S., Kiyaninejad, M., Kisi, O., 2019. Evaluating the application of data-driven intelligent methods to estimate discharge over triangular arced labyrinth weir. Flow Meas. Instrum., 68, 101573. http://dx.doi.org/10.1016/j.flowmeasinst.2019.101573 Search in Google Scholar

eISSN:
1338-4333
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Engineering, Introductions and Overviews, other