INFORMAZIONI SU QUESTO ARTICOLO

Cita

Ad-hoc-AG Boden, 2005. Bodenkundliche Kartieranleitung. 5th ed. Bundesanstalt für Geowissenschaften und Rohstoffe und Niedersächsisches Landesamt für Bodenforschung, Hannover.Search in Google Scholar

Bachmann, J., Goebel, M.-O., Woche, S.K., 2013. Smallscale contact angle mapping on undisturbed soil surfaces. J. Hydrol. Hydromech., 611, 3–8. https://doi.org/10.2478/johh-2013-000210.2478/johh-2013-0002Search in Google Scholar

Beck-Broichsitter, S., Gerriets, M.R., Gerke, H.H., Sobotkova, M., Dusek, J., Dohrmann, R., Horn, R., 2020a. Brilliant Blue sorption characteristics of clay-organic aggregate coatings from Bt-horizon. Soil Till. Res., 201, 104635. https://doi.org/10.1016/j.still.2020.10463510.1016/j.still.2020.104635Search in Google Scholar

Beck-Broichsitter, S., Gerriets, M.R., Puppe, D., Leue, M., Sobotkova, M., Dusek, J., Gerke, H.H., 2020b. Laser-based 3D microscopic gauging of soil aggregate coating thickness and volume. Soil Till. Res., 204, 104715. https://doi.org/10.1016/j.still.2020.10471510.1016/j.still.2020.104715Search in Google Scholar

Beck-Broichsitter, S., Ruth, S., Schröder, R., Fleige, H., Gerke, H.H., Horn, R., 2020c. Simultaneous determination of wettability and shrinkage in an organic residue amended loamy topsoil. J. Hydrol. Hydromech., 68, 2, 111–118. https://doi.org/10.2478/johh-2020-000710.2478/johh-2020-0007Search in Google Scholar

Bieganowski, A., Ryżak, M., Sochan, A., Barna, G., Hernádi, H., Beczek, M., Polakowski, C., Makó, A., 2018. Chapter Five - Laser diffractometry in the measurements of soil and sediment particle size distribution. Advances in Agronomy 151, 215–279.10.1016/bs.agron.2018.04.003Search in Google Scholar

Blume, H.-P., Stahr, K., Leinweber, P., 2011. Bodenkundliches Praktikum - Eine Einführung in pedologisches Arbeiten für Ökologen, Land- und Forstwirte, Geo- und Umweltwissenschaftler. Spektrum Akademischer Verlag, Heidelberg.Search in Google Scholar

de Oliveira, J.S., Inda, A.V., Barrón, V., Torrent, J., Tiecher, T., de Oliveira Camargo, F.A., 2020. Soil properties governing phosphorus adsorption in soils of Southern Brazil. Geoderma Regional, 22, e00318 https://doi.org/10.1016/j.geodrs.2020.e0031810.1016/j.geodrs.2020.e00318Search in Google Scholar

Dohnal, M., Vogel, T., Sanda, M., Jelinkova, V., 2012. Uncertainty analysis of a dual-continuum model used to simulate subsurface hillslope runoff involving oxygen-18 as natural tracer. J. Hydrol. Hydromech., 60, 3, 194–205. https://doi.org/10.2478/v10098-012-0017-010.2478/v10098-012-0017-0Search in Google Scholar

Dusek, J., Vogel, T., 2019. Modeling travel time distributions of preferential subsurface runoff, deep percolation and transpiration at a montane forest hillslope site. Water, 11, 2396. https://doi.org/10.3390/w1111239610.3390/w11112396Search in Google Scholar

Fér, M., Leue, M., Kodešová, R., Gerke, H.H., Ellerbrock, R.H., 2016. Droplet infiltration dynamics and soil wettability related to soil organic matter of soil aggregate coatings and interiors. J. Hydrol. Hydromech., 64, 111–120. https://doi.org/10.1515/johh-2016-002110.1515/johh-2016-0021Search in Google Scholar

Fér, M., Kodešová, R., Golovko, O., Schmidtová, Z., Klement, A., Nikodem, A., Kočárek, M., Grabic, R., 2018. Sorption of atenolol, sulfamethoxazole, and carbamazepine onto soil aggregates from the illuvial horizon of the Haplic Luvisol on loess. Soil Water Res., 13, 177−183. https://doi.org/10.17221/82/2018-SWR10.17221/82/2018-SWRSearch in Google Scholar

Goossens, D., 2008. Techniques to measure grain-size distributions of loamy sediments: A comparative study of ten instruments for wet analysis. Sedimentology, 55, 65–96. https://doi.org/10.1111/j.1365-3091.2007.00893.x10.1111/j.1365-3091.2007.00893.xSearch in Google Scholar

Grehan, G., Maheu, B., Gouesbet, G., 1986. Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation. Appl. Opt., 25, 19, 3539–3548. https://doi.org/10.1364/AO.25.00353910.1364/AO.25.003539Search in Google Scholar

Hasler, M., Horton, L.A., 2008. Multiple contrast tests in the presence of heteroscedasticity. Biometrical J., 50, 793–800. https://doi.org/10.1002/bimj.20071046610.1002/bimj.20071046618932141Search in Google Scholar

Hobley, E.U., Prater, I., 2019. Estimating soil texture from vis-NIR spectra. Eur. J. Soil Sci., 70, 1, 83–95. https://doi.org/10.1111/ejss.1273310.1111/ejss.12733Search in Google Scholar

Igaz, D., Aydin, E., Šinkovičová, M., Šimanský, V., Tall, A., Horák, J., 2020. Laser diffraction as an innovative alternative to standard pipette method for determination of soil texture classes in Central Europe. Water, 12, 1232. https://doi.org/10.3390/w1205123210.3390/w12051232Search in Google Scholar

ISO 1332:2020-01. Particle Size Analysis – Laser Diffraction Methods. International Organization for Standardization, Geneva, Switzerland.Search in Google Scholar

ISO 11277:2020. Soil quality — Determination of particle size distribution in mineral soil material — Method by sieving and sedimentation. International Organization for Standardization, Geneva, Switzerland.Search in Google Scholar

IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.Search in Google Scholar

Jensen, J.L., Schjønning, P., Watts, C.W., Christensen, B.T., Munkholm, L.J., 2017. Soil texture analysis revisited: Removal of organic matter matters more than ever. PLoS ONE, 12, 5, e0178039. https://doi.org/10.1371/journal.pone.017803910.1371/journal.pone.0178039543688228542416Search in Google Scholar

Koza, M., Schmidt, G., Bondarovich, A., Akshalov, K., Conrad, C., Pöhlitz, J., 2021. Consequences of chemical pretreatments in particle size analysis for modelling wind erosion. Geoderma, 396, 115073. https://doi.org/10.1016/j.geoderma.2021.11507310.1016/j.geoderma.2021.115073Search in Google Scholar

Kubínová, R., Neumann, M., Kavka, P., 2021. Aggregate and particle size distribution of the soil sediment eroded on steep artificial slopes. Appl. Sci., 11, 4427. https://doi.org/10.3390/app1110442710.3390/app11104427Search in Google Scholar

Leue, M., Wohld, A., Gerke, H.H., 2018. Two-dimensional distribution of soil organic carbon at intact macropore surfaces in BT-horizons. Soil Till. Res., 176, 1–9. https://doi.org/10.1016/j.still.2017.10.00210.1016/j.still.2017.10.002Search in Google Scholar

Leue, M., Beck-Broichsitter, S., Felde, V.J.M.N.L., Gerke, H.H., 2019. Determining mm-scale maps of cation exchange capacity at macropore surfaces in Bt-horizons. Vadose Zone J., 16, 9. https://doi.org/10.2136/vzj2018.08.016210.2136/vzj2018.08.0162Search in Google Scholar

Leue, M., Uteau, D., Peth, S., Beck-Broichsitter, S., Gerke, H.H., 2020. Volume-related quantification of organic carbon content and cation exchange capacity of macropore surfaces in Bt horizons. Vadose Zone J., 19, e20069. https://doi.org/10.1002/vzj2.2006910.1002/vzj2.20069Search in Google Scholar

Li, J, Heap, A.D., 2011. A review of comparative studies of spatial interpolation methods in environmental sciences: performance and impact factors. Ecol. Inform., 6, 228–241. https://doi.org/10.1016/j.ecoinf.2010.12.00310.1016/j.ecoinf.2010.12.003Search in Google Scholar

Makó, A., Szabó, B., Rajkai, K., Szabó, J., Bakacsi, Z., Labancz, V., Hernádi, H., Barna, G., 2019. Evaluation of soil texture determination using soil fraction data resulting from laser diffraction method. Int. Agrophys., 33, 4, 445–454. https://doi.org/10.31545/intagr/11334710.31545/intagr/113347Search in Google Scholar

Mastersizer 3000 User Guide, 2020. Malvern Panalytical Ltd, Malvern, UK.Search in Google Scholar

McNeill, S.J., Liburne, L.R., Carrick, S., Webb, T.H., Cuthill, T., 2018. Pedotransfer functions for the soil water characteristics of New Zealand soils using S-map information. Geoderma, 326, 96–110. https://doi.org/10.1016/j.geoderma.2018.04.01110.1016/j.geoderma.2018.04.011Search in Google Scholar

Mehra, O.P., Jackson, M.L., 1960. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clay Clay Miner., 7, 317–327. https://doi.org/10.1346/CCMN.1958.007012210.1346/CCMN.1958.0070122Search in Google Scholar

Merkus, H.G., 2009. Particle Size Measurements: Fundamentals, Practice, Quality. Springer, Dordrecht, the Netherlands.Search in Google Scholar

Mikutta, R., Kleber, M., Torn, M.S., Jahn, R., 2006. Stabilization of soil organic matter: association with minerals or chemical recalcitrance? Biogeochemistry, 77, 25–56. https://doi.org/10.1007/s10533-005-0712-610.1007/s10533-005-0712-6Search in Google Scholar

Polakowski, C., Ryzak, M., Sochan, A., Beczek, M., Mazur, R., Bieganowski, A., 2021. Particle size distribution of various soil materials measured by laser diffraction - the problem of reproducibility. Minerals, 11, 465. https://doi.org/10.3390/min1105046510.3390/min11050465Search in Google Scholar

QGIS Development Team, 2013. Geographic Information System. Open Source Geospatial Foundation. http://qgis.org.Search in Google Scholar

R Development Core Team, 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Search in Google Scholar

Sanda, M., Cislerova, M., 2009. Transforming hydrographs in the hillslope subsurface. J. Hydrol. Hydromech., 57, 264–275. https://doi.org/10.2478/v10098-009-0023-z10.2478/v10098-009-0023-zSearch in Google Scholar

Sanda, M., Vitvar, T., Kulasova, A., Jankovec, J., Cislerova, M., 2014. Run-off formation in a humid, temperate headwater catchment using a combined hydrological, hydrochemical and isotopic approach (Jizera Mountains, Czech Republic). Hydrol. Process., 28, 3217–3229. https://doi.org/10.1002/hyp.984710.1002/hyp.9847Search in Google Scholar

Soil Survey Staff, 1999. Soil Taxonomy: A basic system of soil classification for making and interpreting soil surveys. USDA, Washington, DC, 869 p.Search in Google Scholar

Stokes, G.G., 1851. On the effect of the internal friction of fluids on the motion of pendulums, 9. Pitt Press Cambridge.Search in Google Scholar

Thomas, C.L., Hernandez-Allica, J., Dunham, S.J., McGrath, S.P., Haefele, S.M., 2021. A comparison of soil texture measurements using mid-infrared spectroscopy (MIRS) and laser diffraction analysis (LDA) in diverse soils. Sci. Rep., 11, 16. https://doi.org/10.1038/s41598-020-79618-y10.1038/s41598-020-79618-y779431133420161Search in Google Scholar

Vdović, N., Obhođaš, J., Pikelj, K., 2010. Revisiting the particle-size distribution of soils: comparison of different methods and sample pre-treatments. Eur. J. Soil Sci., 61, 854–864. https://doi.org/10.1111/j.1365-2389.2010.01298.x10.1111/j.1365-2389.2010.01298.xSearch in Google Scholar

Yang, Y., Wang, L., Wendroth, O., Liu, B., Cheng, C., Huang, T., Shi, Y., 2019. Is the Laser diffraction method reliable for soil particle size distribution analysis? Soil Sci. Soc. Am. J., 83, 2. https://doi.org/10.2136/sssaj2018.07.025210.2136/sssaj2018.07.0252Search in Google Scholar

Zarco-Perello, S., Simões, N., 2017. Ordinary kriging vs inverse distance weighting: Spatial interpolation of the sessile community of Madagascar Reef, Gulf of Mexico. Peer J., 5, e4078. https://doi.org/10.7717/peerj.407810.7717/peerj.4078571247029204321Search in Google Scholar

Zimmermann, I., Horn, R., 2020. Impact of sample pretreatment on the result of texture analysis in different soils. Geoderma, 371, 114379. https://doi.org/10.1016/j.geoderma.2020.11437910.1016/j.geoderma.2020.114379Search in Google Scholar

eISSN:
1338-4333
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Engineering, Introductions and Overviews, other