Accesso libero

An empirical model for describing the influence of water content and concentration of sulfamethoxazole (antibiotic) in soil on the total net CO2 efflux

INFORMAZIONI SU QUESTO ARTICOLO

Cita

ADC BioScientific, 2011. User manual LCi-SD Leaf Chamber/Soil Respiration Analysis System. Hertfortshire.Search in Google Scholar

Al-Khazrajy, O.S.A., Bergstrom, E., Boxall, A.B.A., 2018. Factors affecting the dissipation of pharmaceuticals in freshwater sediments. Environ. Toxicol. Chem., 37, 3, 829–838.10.1002/etc.4015Search in Google Scholar

Anderson, T.H., Domsch, K.H., 1985. Determination of eco-physiological maintenance carbon requirements of soil microorganisms in a dormant state. Biol. Fert. Soils., 1, 81–89.10.1007/BF00255134Search in Google Scholar

Bahn, M., Reichstein, M., Davidson, E.A., Grünzweig, J., Jung, M., Carbone, M. S., Epron, D., Misson, L., Nouvellon, Y., Roupsard, O., Savage, K., Trumbore, S. E., Gimeno, C., Curiel Yuste, J., Tang, J., Vargas, R., and Janssens, I. A., 2010. Soil respiration at mean annual temperature predicts annual total across vegetation types and biomes. Biogeosciences, 7, 2147–2157.10.5194/bg-7-2147-2010Search in Google Scholar

Balogh, J., Pintér, K., Fóti, S., Cserhalmi, D., Papp, M., Nagy, Z., 2011. Dependence of soil respiration on soil moisture, clay content, soil organic matter and CO2 uptake in dry grasslands. Soil Biol. Biochem., 43, 1006–1013.10.1016/j.soilbio.2011.01.017Search in Google Scholar

Biel-Maeso, M., González-González, C., Lara-Martín, P.A., Corada-Fernández, C., 2019. Sorption and degradation of contaminants of emerging concern in soils under aerobic and anaerobic conditions. Sci. Total Environ., 666, 662–671.10.1016/j.scitotenv.2019.02.279Search in Google Scholar

Birch, H., 1958. The effect of soil drying on humus decomposition and nitrogen availability. Plant Soil, 10, 9–31.10.1007/BF01343734Search in Google Scholar

Buchmann, N., 2000. Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biol. Biochem., 32, 1625–1635.10.1016/S0038-0717(00)00077-8Search in Google Scholar

Caracciolo, A.B., Topp, E., Grenni, P., 2015. Pharmaceuticals in the environment: biodegradation and effects on natural microbial communities. A review. J. Pharmaceut. Biomed., 106, 25–36.10.1016/j.jpba.2014.11.04025534003Search in Google Scholar

Charuaud, L., Jardem E., Jaffrezic, A., Thomas, M.F., Le Bot, B., 2019. Veterinary pharmaceutical residues from natural water to tap water: Sales, occurrence and fate. J. Hazard. Mater., 361, 169–186.10.1016/j.jhazmat.2018.08.07530179788Search in Google Scholar

Chen, J., Xie, S., 2018. Overview of sulfonamide biodedegradation and relevant pathways and microorganisms. Sci. Total Environ., 640–641, 1465–1477.10.1016/j.scitotenv.2018.06.01630021313Search in Google Scholar

Davidson, E.A., Janssens, I., 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165–173.10.1038/nature0451416525463Search in Google Scholar

Dane, J.H., Topp, C.T. (Eds), 2002. Methods of Soil Analysis. Part 4 – Physical Methods. Soil Science Society of America, Inc. Madison, USA.10.2136/sssabookser5.4Search in Google Scholar

Davidson, E.A., Belk, E., Boone, R., 1998. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Glob. Change Biol., 4, 217–227.10.1046/j.1365-2486.1998.00128.xSearch in Google Scholar

Fér, M., Kodešová, R., Klement, A., 2014. CO2 emission from erosion affected soils. In: 14th International Multidisciplinary Scientific Geoconference and EXPO, SGEM 2014. Albena. Bulgaria; 17 June 2014 through 26 June 2014, 2, 3, 37–44.Search in Google Scholar

Fér, M., Kodešová, R., Nikodem, A., Jelenová, K., Klement, A., 2018a. Influence of soil–water content on CO2 efflux within the elevation transect heavily impacted by erosion. Ecohydrology, 2018; e1989.10.1002/eco.1989Search in Google Scholar

Fér, M., Kodešová, R., Golovko, O., Schmidtová, Z., Klement, A., Kočárek, M., Grabic, R., 2018b. Sorption of atenolol, sulfamethoxazole and carbamazepine onto soil aggregates from the illuvial horizon of the Haplic Luvisol on loess. Soil Water Res., 13, 3, 177–183.10.17221/82/2018-SWRSearch in Google Scholar

Flint A.L., Flint L.E., 2002. Particle density, in. J.H. Dane, G.C. Topp (Eds.), Methods of Soil Analysis. Part 4. Physical Methods, Soil Science Society of America, Inc., Madison, USA, pp. 229–240.10.2136/sssabookser5.4.c10Search in Google Scholar

Frková, Z., Vystavna, Y., Koubová, A., Kotas, P., Grabicová, K., Grabic, R., Kodešová, R., Chroňáková, A., 2020. Microbial responses to selected pharmaceuticals 1 in agricultural soils: Microcosm study on the roles of soil, treatment and time. Soil Biol. Biochem., 149, 107924.10.1016/j.soilbio.2020.107924Search in Google Scholar

Gee, G.W., Or, D., 2002. Particle-size analysis, in. J.H. Dane, G.C. Topp (Eds.), Methods of Soil Analysis. Part 4. Physical Methods, Soil Science Society of America, Inc., Madison, USA, pp. 255–294.Search in Google Scholar

Golovko, O., Koba, O., Kodešová, R., Fedorova, G., Kumar, V., Grabic, R., 2016. Development of fast and robust multiresidual LC-MS/MS method for determination of pharmaceuticals in soils. Environ. Sci. Pollut. R., 23, 14, 14068–14077.10.1007/s11356-016-6487-627044290Search in Google Scholar

Grenni, P., Ancona, V., Caracciolo, A.B., 2018. Ecological effects of antibiotics on natural ecosystems: A review. Microch. J., 136, 25–39.10.1016/j.microc.2017.02.006Search in Google Scholar

Hurtado, C., Montano-Chávez, Y.N., Domínguez, C., Bayona, J.M., 2017. Degradation of emerging organic contaminants in an agricultural soil: Decoupling biotic and abiotic processes. Water Air Soil Poll., 228, 243.10.1007/s11270-017-3402-9Search in Google Scholar

Iovieno, P., Bååth, E., 2008. Effect of drying and rewetting on bacterial rates in soil. FEMS Microbiol. Ecol., 65, 400–407.10.1111/j.1574-6941.2008.00524.x18547324Search in Google Scholar

ISO 10390, 2005. Soil quality-determination of pH. International Organization for Standardization, Geneva.Search in Google Scholar

Ivanová, L., Mackuľak, T., Grabic, R., Golovko, O., Koba, O., Vojs Staňová, A., Szabová, P., Grenčíková, A., Bodík, I., 2018. Pharmaceuticals and illicit drugs – a new threat to the application of sewage sludge in agriculture. Sci. Total Environ., 634, 606–615.10.1016/j.scitotenv.2018.04.00129635203Search in Google Scholar

Jiang, J., Guo, S., Zhang, Y., Liu, Q., Wang, R., Wang, Z., Li, N., Li, R., 2015. Changes in temperature sensitivity of soil respiration in the phase of a three-year crop rotation system. Soil Till. Res., 150, 139–146.10.1016/j.still.2015.02.002Search in Google Scholar

Klement, A., Kodešová, R., Bauerová, M., Golovko, O., Kočárek, M., Fér, M., Koba, O., Nikodem, A., Grabic, R., 2018. Sorption of citalopram, irbesartan and fexofenadine in soils: estimation of sorption coefficients from soil properties. Chemosphere, 195, 615–623.10.1016/j.chemosphere.2017.12.09829287270Search in Google Scholar

Klement, A., Kodešová, R., Golovko, O., Fér, M., Nikodem, A., Kočárek, M., Grabic, R., 2020. Uptake, translocation and transformation of three pharmaceuticals in green pea plants. J. Hydrol. Hydromech., 68, 1, 1–11.10.2478/johh-2020-0001Search in Google Scholar

Kočárek, M., Kodešová, R., Vondráčková, L., Golovko, O., Fér, M., Klement, A., Nikodem, A., Jakšík, O., Grabic, R., 2016. Simultaneous sorption of four ionizable pharmaceuticals in different horizons of three soil types. Environ. Pollut., 218, 563–573.10.1016/j.envpol.2016.07.03927460901Search in Google Scholar

Kodešová, R., Grabic, R., Kočárek, M., Klement, A., Golovko, O., Fér, M., Nikodem, A., Jakšík, O., 2015. Pharmaceuticals' sorptions relative to properties of thirteen different soils. Sci. Total Environ., 511, 435–443.10.1016/j.scitotenv.2014.12.08825569579Search in Google Scholar

Kodešová, R., Kočárek, M., Klement, A., Golovko, O., Koba, O., Fér, M., Nikodem, A., Vondráčková, L., Jakšík, O., Grabic, R., 2016. An analysis of the dissipation of pharmaceuticals under thirteen different soil conditions. Sci. Total Environ., 544, 369–381.10.1016/j.scitotenv.2015.11.08526657382Search in Google Scholar

Kodešová, R., Klement, A., Golovko, O., Fér, M., Nikodem, A., Kočárek, M., Grabic, R., 2019a. Root uptake of atenolol, sulfamethoxazole and carbamazepine, and their transformation in three soils and four plants. Environ. Sci. Pollut. Res., 26, 10, 9876–9891.10.1007/s11356-019-04333-930734257Search in Google Scholar

Kodešová, R., Klement, A., Golovko, O., Fér, M., Kočárek, M., Nikodem, A., Grabic, R., 2019b. Soil influences on uptake and transfer of pharmaceuticals from sewage sludge amended soils to spinach. J. Environ. Manage., 250, 109407.10.1016/j.jenvman.2019.10940731472377Search in Google Scholar

Kodešová, R., Chroňáková, A., Grabicová, K., Kočárek, M., Schmidtová, Z., Frková, Z., Vojs-Staňová, A., Nikodem, A., Klement, A., Fér, M., Grabic, R., 2020. How microbial community composition, sorption and simultaneous application of six pharmaceuticals affect their dissipation in soils. Sci. Total Environ., 746, 141134.10.1016/j.scitotenv.2020.14113432768780Search in Google Scholar

Kuzyakov, Y., 2006. Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol. Biochem., 38, 425–448.10.1016/j.soilbio.2005.08.020Search in Google Scholar

Meisner, A., Bååth, E., Rousk, J., 2013. Microbial growth responses upon rewetting soil dried for four days or one year. Soil Biol. Biochem., 66, 188–192.10.1016/j.soilbio.2013.07.014Search in Google Scholar

Meisner, A., Rousk, J., Bååth, E., 2015. Prolonged drought changes the bacterial growth response to rewetting. Soil Biol. Biochem., 88, 314–322.10.1016/j.soilbio.2015.06.002Search in Google Scholar

Molaei, A., Lakzian, A., Haghnia, G., Astaraei, A., Rasouli-Sadaghiani, M., Teresa Ceccherini M., Datta, R., 2017. Assessment of some cultural experimental methods to study the effects of antibiotics on microbial activities in a soil: An incubation study. PLoS ONE, 12, 7, e0180663.10.1371/journal.pone.0180663550036728683144Search in Google Scholar

Moyano, F.E., Vasilyeva, N., Bouckaert, L., Cook, F., Craine, J., Curiel Yuste, J., Don, D., Epron, D., Formanek, P., Franzluebbers, A., Ilstedt, U., Kätterer, K., Orchard, V., Reichstein, M., Rey, A., Ruamps, L., Subke, J.-A., Thomsen, I.K., Chenu, C., 2012. The moisture response of soil heterotrophic respiration: interaction with soil properties. Biogeosciences, 9, 1173–1182.10.5194/bg-9-1173-2012Search in Google Scholar

Moyano, F.E., Vasilyeva, N., Lorenzo, M., 2018. Diffusion limitations and Michaelis–Menten kinetics as drivers of combined temperature and moisture effects on carbon fluxes of mineral soils. Biogeosciences, 15, 5031–5045.10.5194/bg-15-5031-2018Search in Google Scholar

OECD, 2002. Test No. 307: aerobic and anaerobic transformation in soil. In: OECD Guidelines for the Testing of Chemicals, Section 3: Degradation and Accumulation. OECD, ISBN: 9789264070509, 17 p.Search in Google Scholar

Pavlů, L., Kodešová, R., Fér, M., Nikodem, A., Němec, F., Prokeš, R., 2021. The impact of various mulch types on soil properties controlling water regime of the Haplic Fluvisol. Soil Till. Res., 205, 104748.10.1016/j.still.2020.104748Search in Google Scholar

R Development Core Team, 2015. R. a language and environment for statistical computing. R foundation for Statistical Computing. (http://www.R-project.org).Search in Google Scholar

Rhoades, J.D., 1996. Salinity, electrical conductivity and total dissolved solids. In: Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E. (Eds): Methods of Soil Analysis. Part 3. Chemical Methods. Soil Science Society of America, Inc., Madison, pp. 417–435.Search in Google Scholar

Schaffer, M., Licha, T., 2015. A framework for assessing the retardation of organic molecules in groundwater: implications of the species distribution for the sorption influenced transport. Sci. Total Environ., 524–525, 187–194.10.1016/j.scitotenv.2015.04.00625897727Search in Google Scholar

Schaufler, G., Kitzler, B., Schindlbacher, A., Skiba, U., Sutton, M.A., Zechmeister-Boltenstern, S., 2010. Greenhouse gas emissions from European soils under different land use. effects of soil moisture and temperature. Eur. J. Soil Sci., 61, 683–696.10.1111/j.1365-2389.2010.01277.xSearch in Google Scholar

Schmidtová, Z., Kodešová, R., Grabicová, K., Kočárek, M., Fér, M., Švecová, H., Klement, A., Nikodem, A., Grabic, R., 2020. Competitive and synergic sorption of carbamazepine, citalopram, clindamycin, fexofenadine, irbesartan and sulfa-methoxazole in seven soils. J. Contam. Hydrol., 234, 103680.10.1016/j.jconhyd.2020.10368032682147Search in Google Scholar

Shen, G., Zhang, Y., Hu, S., Zhang, H., Yuan, Z., Zhang, W., 2018. Adsorption and degradation of sulfadiazine and sulfamethoxazole in an agricultural soil system under an anaerobic condition: Kinetics and environmental risks. Chemosphere, 194, 266–274.10.1016/j.chemosphere.2017.11.17529216546Search in Google Scholar

Skjemstad, J., Baldock, J.A., 2008. Total and organic carbon. In: Carter, M. (Ed): Soil Sampling and Methods of Analysis, (2nd Edition), Boca Raton, FL, USA. Soil Science Society of Canada, CRC Press, pp. 225–238.10.1201/9781420005271.ch21Search in Google Scholar

Srinivasan, P., Sarmah, A.K., 2014. Dissipation of sulfamethoxazole in pasture soils as affected by soil and environmental factors. Sci. Total Environ., 479–480, 284–291.10.1016/j.scitotenv.2014.02.01424565861Search in Google Scholar

Thelusmond, J.R., Strathmann, T.J., Cupples, A.M., 2019. Carbamazepine, triclocarban and triclosan biodegradation and the phylotypes and functional genes associated with xenobiotic degradation in four agricultural soils. Sci. Total Environ., 657, 1138–1149.10.1016/j.scitotenv.2018.12.14530677881Search in Google Scholar

WRB, 2015. World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.Search in Google Scholar

Xu, L., Baldocchi, D.D., Tang, J., 2004. How soil moisture, rain pulses, and growth alter the response of ecosystem respiration to temperature. Global Biogeoch. Cy., 18, GB4002.10.1029/2004GB002281Search in Google Scholar

Yuste, J.C., Baldocchi, D.D., Gershenson, A., Goldstein, A., 2007. Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture. Glob. Change Biol., 13, 1–18.10.1111/j.1365-2486.2007.01415.xSearch in Google Scholar

Verlicchi, P., Zambello, E., 2015. Pharmaceuticals and personal care products in untreated and treated sewage sludge: occurrence and environmental risk in the case of application on soil - a critical review. Sci. Total Environ., 538, 750–767.10.1016/j.scitotenv.2015.08.10826327643Search in Google Scholar

Zhang, Y., Hu, S., Zhang, H., Shen, G., Yuan, Z., Zhang, W., 2017. Degradation kinetics and mechanism of sulfadiazine and sulfamethoxazole in an agricultural soil system with manure application. Sci. Total Environ., 607–608, 1348–1356.10.1016/j.scitotenv.2017.07.08328738510Search in Google Scholar

Zhi, D., Yang, D., Zheng, Y., Yang, Y., He, Y., Luo, L., Zhou, Y., 2019. Current progress in the adsorption, transport and biodegradation of antibiotics in soil. J. Environ. Manage., 251, 109598.10.1016/j.jenvman.2019.10959831563054Search in Google Scholar

Zhong, Y., Yan, W., Zong, Y., Shangguan, Z., 2016. Biotic and abiotic controls on the diel and seasonal variations in soil respiration and its components in a wheat field under long-term nitrogen fertilization. Field Crop. Res., 199, 1–9.10.1016/j.fcr.2016.09.014Search in Google Scholar

eISSN:
0042-790X
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Engineering, Introductions and Overviews, other