Accesso libero

Water repellency in eucalyptus and pine plantation forest soils and its relation to groundwater levels estimated with multi-temporal modeling

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Adane, Z., Nasta, P., Gates., J.B., 2017. Links between soil hydrophobicity and groundwater recharge under plantations in a sandy grassland setting, Nebraska Sand Hills, USA. Forest Science, 63, 4, 388–401. https://doi.org/10.5849/FS-2016-13710.5849/FS-2016-137Search in Google Scholar

Alagna, V., Iovino, M., Bagarello, V., Mataix-Solera, J., Lichner, Ľ., 2017. Application of minidisk infiltrometer to estimate water repellency in Mediterranean pine forest soils. Journal of Hydrology and Hydromechanics, 65, 3, 254–263. https://doi.org/10.1515/johh-2017-000910.1515/johh-2017-0009Search in Google Scholar

Bachmann, J., Ellies, A., Hartge, K.H., 2000. Development and application of a new sessile drop contact angle method to assess soil water repellency. Journal of Hydrology, 231, 66–75. https://doi.org/10.1016/S0022-1694(00)00184-010.1016/S0022-1694(00)00184-0Search in Google Scholar

Badía-Villas, D., González-Pérez, J.A., Aznar, J.M., Arjona-Gracia, B., Martí-Dalmau, C., 2014. Changes in water repellency, aggregation and organic matter of a mollic horizon burned in laboratory: soil depth affected by fire. Geoderma, 213, 400–407. https://doi.org/10.1016/j.geoderma.2013.08.03810.1016/j.geoderma.2013.08.038Search in Google Scholar

Bauters, T.W., Steenhuis, T.S., Parlange, J.Y., DiCarlo, D.A., 1998. Preferential flow in water-repellent sands. Soil Science Society of America Journal, 62, 5, 1185–1190. https://doi.org/10.2136/sssaj1998.03615995006200050005x10.2136/sssaj1998.03615995006200050005xSearch in Google Scholar

Bauters, T.W.J., Steenhuis, T.S., DiCarlo, D.A., Nieber, J.L., Dekker, L.W., Ritsema, C.J., Parlange, J.Y., Haverkamp, R., 2000. Physics of water repellent soils. Journal of Hydrology, 231, 233–243. https://doi.org/10.1016/S0022-1694(00)00197-910.1016/S0022-1694(00)00197-9Search in Google Scholar

Benito, E., Varela, E., Rodríguez-Alleres, M., 2019. Persistence of water repellency in coarse-textured soils under various types of forests in NW Spain. Journal of Hydrology and Hydromechanics, 67, 2, 129–134. https://doi.org/10.2478/johh-2018-003810.2478/johh-2018-0038Search in Google Scholar

Blake, G.R., Hartge, K.H., 1986a. Bulk density. In: Klute, A. (Ed.): Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods. 2nd Ed. Soil Science Society of America: Madison, WI., pp. 363–375. https://doi.org/10.2136/sssabookser5.1.2ed.c1310.2136/sssabookser5.1.2ed.c13Search in Google Scholar

Blake, G.R., Hartge, K.H., 1986b. Particle Density. In: Klute, A. (Ed.): Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods. 2nd Ed. Soil Science Society of America: Madison, WI., pp. 377–382. https://doi.org/10.2136/sssabookser5.1.2ed.c1410.2136/sssabookser5.1.2ed.c14Search in Google Scholar

Bouyoucos, G.J., 1962. Hydrometer method improved for making particle size analyses of soils 1. Agronomy Journal, 54, 5, 464–465. https://doi.org/10.2134/agronj1962.00021962005400050028x10.2134/agronj1962.00021962005400050028xSearch in Google Scholar

Brunner, P., Franssen, H.J.H., Kgotlhang, L., Bauer-Gottwein, P., Kinzelbach, W., 2007. How can remote sensing contribute in groundwater modeling? Hydrogeology journal, 15, 1, 5–18. https://doi.org/10.1007/s10040-006-0127-z10.1007/s10040-006-0127-zSearch in Google Scholar

Contreras, S., Cantón, Y., Solé-Benet, A., 2008. Sieving crusts and macrofaunal activity control soil water repellency in semiarid environments: evidences from SE Spain. Geoderma, 145, 3–4, 252–258. https://doi.org/10.1016/j.geoderma.2008.03.01910.1016/j.geoderma.2008.03.019Search in Google Scholar

Doerr, S.H., Shakesby, R.A., Walsh, R.P., 1996. Soil hydrophobicity variations with depth and particle size fraction in burned and unburned Eucalyptus globulus and Pinus pinaster forest terrain in the Agueda Basin, Portugal. Catena, 27, 1, 25–47. https://doi.org/10.1016/0341-8162(96)00007-010.1016/0341-8162(96)00007-0Search in Google Scholar

Doerr, S.H., Thomas, A.D., 2000. The role of soil moisture in controlling water repellency: new evidence from forest soils in Portugal. Journal of Hydrology, 231, 134–147. https://doi.org/10.1016/S0022-1694(00)00190-610.1016/S0022-1694(00)00190-6Search in Google Scholar

Doerr, S.H., Woods, S.W., Martin, D.A., Casimiro, M., 2009. ‘Natural background’ soil water repellency in conifer forests of the north-western USA: its prediction and relationship to wildfire occurrence. Journal of Hydrology, 371, 1–4, 12–21. https://doi.org/10.1016/j.jhydrol.2009.03.01110.1016/j.jhydrol.2009.03.011Search in Google Scholar

ESRI, 2017. ArcGIS-Desktop ArcMap: Release 10.4.1. Red-lands, CA: Environmental Systems Research Institute.Search in Google Scholar

Fér, M., Kodešová, R., 2012. Estimating hydraulic conductivities of the soil aggregates and their clay-organic coatings using numerical inversion of capillary rise data. Journal of Hydrology, 468, 229–240. https://doi.org/10.1016/j.jhydrol.2012.08.03710.1016/j.jhydrol.2012.08.037Search in Google Scholar

Fér, M., Leue, M., Kodešová, R., Gerke, H.H., Ellerbrock, R.H., 2016. Droplet infiltration dynamics and soil wettability related to soil organic matter of soil aggregate coatings and interiors. Journal of Hydrology and Hydromechanics, 64, 2, 111–120. https://doi.org/10.1515/johh-2016-002110.1515/johh-2016-0021Search in Google Scholar

Flores-Mangual, M.L., Lowery, B., Bockheim, J.G., Pagliari, P.H., Scharenbroch, B., 2013. Hydrophobicity of Sparta sand under different vegetation types in the Lower Wisconsin River Valley. Soil Science Society of America Journal, 77, 5, 1506–1516. https://doi.org/10.2136/sssaj2012.034310.2136/sssaj2012.0343Search in Google Scholar

Gerke, H.H., Köhne, J.M., 2002. Estimating hydraulic properties of soil aggregate skins from sorptivity and water retention. Soil Science Society of America Journal, 66(1), 26-36. https://doi.org/10.2136/sssaj2002.260010.2136/sssaj2002.2600Search in Google Scholar

Giordano, M., 2009. Global groundwater? Issues and solutions. Annual Review of Environment and Resources, 34, 153–178. https://doi.org/10.1146/annurev.environ.030308.10025110.1146/annurev.environ.030308.100251Search in Google Scholar

Imeson, A.C., Verstraten, J.M., Van Mulligen, E.J., Sevink, J., 1992. The effects of fire and water repellency on infiltration and runoff under Mediterranean type forest. Catena, 19(3-4), 345–361. https://doi.org/10.1016/0341-8162(92)90008-Y10.1016/0341-8162(92)90008-YSearch in Google Scholar

Iovino, M., Pekárová, P., Hallett, P.D., Pekár, J., Lichner, Ľ., Mataix-Solera, J., Alagna, V., Walsh, R., Raffan, A., Schacht, K., Rodný, M., 2018. Extent and persistence of soil water repellency induced by pines in different geographic regions. Journal of Hydrology and Hydromechanics, 66, 4, 360–368. https://doi.org/10.2478/johh-2018-002410.2478/johh-2018-0024Search in Google Scholar

Kajiura, M., Etori, Y., Tange, T., 2012. Water condition control of in situ soil water repellency: an observational study from a hillslope in a Japanese humid-temperate forest. Hydrological Processes, 26, 20, 3070–3078. https://doi.org/10.1002/hyp.831010.1002/hyp.8310Search in Google Scholar

Kobayashi, M., Shimizu, T., 2007. Soil water repellency in a Japanese cypress plantation restricts increases in soil water storage during rainfall events. Hydrological Processes: An International Journal, 21, 17, 2356–2364. https://doi.org/10.1002/hyp.675410.1002/hyp.6754Search in Google Scholar

Lee, C., Yang, H.J., Yun, T.S., Choi, Y., Yang, S., 2015. Water-entry pressure and friction angle in an artificially synthesized water-repellent silty soil. Vadose Zone Journal, 14, 4. https://doi.org/10.2136/vzj2014.08.010610.2136/vzj2014.08.0106Search in Google Scholar

Leelamanie, D.A.L., 2016. Occurrence and distribution of water repellency in size fractionated coastal dune sand in Sri Lanka under Casuarina shelterbelt. Catena, 142, 206–212. https://doi.org/10.1016/j.catena.2016.03.02610.1016/j.catena.2016.03.026Search in Google Scholar

Leelamanie, D.A.L., Karube, J., Yoshida, A., 2008. Characterizing water repellency indices: Contact angle and water drop penetration time of hydrophobized sand. Soil Science & Plant Nutrition, 54, 2, 179–187. https://doi.org/10.1111/j.1747-0765.2007.00232.x10.1111/j.1747-0765.2007.00232.xSearch in Google Scholar

Leelamanie, D.A.L., Liyanage, T.D.P., Piyaruwan, H.I.G.S., 2016. Occurrence and Distribution of Water Repellency in soils under Exotic Plantation Forests in Sri Lanka. 13th Academic Sessions, University of Ruhuna, March 02, 2016. ISSN: 2362-0412Search in Google Scholar

Leelamanie, D.A.L., Nishiwaki, J., 2019. Water repellency in Japanese coniferous forest soils as affected by drying temperature and moisture. Biologia, 74, 2, 127–137. https://doi.org/10.2478/s11756-018-0157-810.2478/s11756-018-0157-8Search in Google Scholar

Letey, J., 2001. Causes and consequences of fire-induced soil water repellency. Hydrological Processes 15, 15, 2867–2875. https://doi.org/10.1002/hyp.37810.1002/hyp.378Search in Google Scholar

Letey, J., Carrillo, M.L.K., Pang, X.P., 2000. Approaches to characterize the degree of water repellency. Journal of Hydrology, 231, 61–65. https://doi.org/10.1016/S00221694(00)00183-9Search in Google Scholar

Lichner, L.U., Hallett, P.D., Feeney, D.S., Ďugová, O., Šír, M., Tesař, M., 2007. Field measurement of soil water repellency and its impact on water flow under different vegetation. Biologia, 62, 5, 537–541. https://doi.org/10.2478/s11756-007-0106-410.2478/s11756-007-0106-4Search in Google Scholar

Lichner, Ľ., Capuliak, J., Zhukova, N., Holko, L., Czachor, H., Kollár, J., 2013. Pines influence hydrophysical parameters and water flow in a sandy soil. Biologia, 68, 6, 1104–1108. https://doi.org/10.2478/s11756-013-0254-710.2478/s11756-013-0254-7Search in Google Scholar

Liyanage, T.D.P., Leelamanie, D.A.L., 2016. Influence of organic manure amendments on water repellency, water entry value, and water retention of soil samples from a tropical Ultisol. Journal of Hydrology and Hydromechanics, 64, 2, 160-166. https://doi:10.1515/johh-2016-002510.1515/johh-2016-0025Search in Google Scholar

McKissock, I., Gilkes, R.J., Harper, R.J., Carter, D.J., 1998. Relationships of water repellency to soil properties for different spatial scales of study. Soil Research. 36, 3, 495–508. https://doi.org/10.1071/S97071.10.1071/S97071Search in Google Scholar

National Atlas of Sri Lanka, 2007. Second Edition, Survey Department of Sri Lanka. Colombo, Sri Lanka.Search in Google Scholar

Pan, S.B., Wang, Z., Su, Q., Sun, T., Zhang, Y., 2008. Groundwater level monitoring model using multi-temporal images in arid region of northwest China. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, 745–750.Search in Google Scholar

Rao, N.S., Chakradhar, G.K.J., Srinivas, V., 2001. Identification of groundwater potential zones using remote sensing techniques in and around Guntur town, Andhra Pradesh, India. Journal of the Indian Society of Remote Sensing, 29, 69–78. https://doi.org/10.1007/BF0298991610.1007/BF02989916Search in Google Scholar

Rodríguez-Alleres, M., Benito, E., de Blas, E., 2007. Extent and persistence of water repellency in north-western Spanish soils. Hydrological Processes: An International Journal, 21, 17, 2291–2299. https://doi.org/10.1002/hyp.676110.1002/hyp.6761Search in Google Scholar

Santos, J.M., Verheijen, F.G., Tavares Wahren, F., Wahren, A., Feger, K.H., Bernard-Jannin, L., Rial-Rivas, M.E., Keizer, J.J., Nunes, J.P., 2016. Soil water repellency dynamics in pine and eucalypt plantations in Portugal–a high-resolution time series. Land Degradation & Development, 27, 5, 1334–1343. https://doi.org/10.1002/ldr.225110.1002/ldr.2251Search in Google Scholar

Schumacher, B.A., 2002. Methods for the determination of total organic carbon (TOC) in soils and sediments. Ecological Risk Assessment Support Center Office of Research and Development US. Environmental Protection Agency, 25 p.Search in Google Scholar

Şen, Z., 2015. Applied Drought Modeling, Prediction, and Mitigation. Chapter 6: Climate change, droughts, and water resources. Elsevier, pp. 321–391. https://doi.org/10.1016/B978-0-12-802176-7.00006-710.1016/B978-0-12-802176-7.00006-7Search in Google Scholar

Senanayake, I.P., Dissanayake, D.M.D.O.K., Mayadunna, B.B., Weerasekera, W.L., 2016. An approach to delineate groundwater recharge potential sites in Ambalantota, Sri Lanka using GIS techniques. Geoscience Frontiers, 7, 115–124. https://doi.org/10.1016/j.gsf.2015.03.00210.1016/j.gsf.2015.03.002Search in Google Scholar

Siteur, K., Mao, J., Nierop, K.G., Rietkerk, M., Dekker, S.C., Eppinga, M.B., 2016. Soil water repellency: a potential driver of vegetation dynamics in coastal dunes. Ecosystems, 19, 7, 1210–1224. https://doi.org/10.1007/s10021-016-9995-910.1007/s10021-016-9995-9Search in Google Scholar

Soil Survey Staff, 2014. Keys to Soil Taxonomy. 12th ed. USDA-Natural Resources Conservation Service, Washington, DC.Search in Google Scholar

Sullivan, L.A., 1990. Soil organic matter, air encapsulation and water-stable aggregation. Journal of Soil Science 41, 3, 529–534. https://doi.org/10.1111/j.1365-2389.1990.tb00084.x10.1111/j.1365-2389.1990.tb00084.xSearch in Google Scholar

Vogelmann, E.S., Reichert, J.M., Reinert, D.J., Mentges, M.I., Vieira, D.A., de Barros, C.A.P., Fasinmirin, J.T., 2010. Water repellency in soils of humid subtropical climate of Rio Grande do Sul, Brazil. Soil and Tillage Research, 110, 1, 126–133. https://doi.org/10.1016/j.still.2010.07.00610.1016/j.still.2010.07.006Search in Google Scholar

Wahl, N.A., Bens, O., Schäfer, B., Hüttl, R.F., 2003. Impact of changes in land-use management on soil hydraulic properties: hydraulic conductivity, water repellency and water retention. Physics and Chemistry of the Earth, Parts A/B/C, 28, 33–36, 1377–1387. https://doi.org/10.1016/j.pce.2003.09.01210.1016/j.pce.2003.09.012Search in Google Scholar

Wallis, M.G., Horne, D.J., McAuliffe, K.W., 1990. A study of water repellency and its amelioration in a yellow-brown sand: 1. Severity of water repellency and the effects of wetting and abrasion. New Zealand Journal of Agricultural Research, 33, 1, 139–144. https://doi.org/10.1080/00288233.1990.1043067010.1080/00288233.1990.10430670Search in Google Scholar

Wang, Z., Wu, L., Wu, Q.J., 2000. Water-entry value as an alternative indicator of soil water-repellency and wettability. Journal of Hydrology, 231, 76–83. https://doi.org/10.1016/S0022-1694(00)00185-210.1016/S0022-1694(00)00185-2Search in Google Scholar

Woche, S.K., Goebel, M.-O., Kirkham, M.B., Horton, R., Van der Ploeg, R.R., Bachmann, J., 2005. Contact angle of soils as affected by depth, texture, and land management. European Journal of Soil Science, 56, 2, 239–251. https://doi.org/10.1111/j.1365-2389.2004.00664.x10.1111/j.1365-2389.2004.00664.xSearch in Google Scholar

Ziogas, A.K., Dekker, L.W., Oostindie, K., Ritsema, C.J., 2005. Soil water repellency in north-eastern Greece with adverse effects of drying on the persistence. Soil Research, 43, 3, 281–289. https://doi.org/10.1071/SR0408710.1071/SR04087Search in Google Scholar

Zubair, L., Ropelewski, C.F., 2006. The strengthening relationship between ENSO and northeast monsoon rainfall over Sri Lanka and southern India. Journal of Climate, 19, 8, 1567–1575. https://doi.org/10.1175/JCLI3670.110.1175/JCLI3670.1Search in Google Scholar

eISSN:
0042-790X
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Engineering, Introductions and Overviews, other