INFORMAZIONI SU QUESTO ARTICOLO

Cita

Allen, C.D., Breshears, D.D., McDowell, N.G., 2015. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere, 6, 8, Article Number 129.10.1890/ES15-00203.1Search in Google Scholar

Aubin, I., Munson, A.D., Cardou, F., Burton, P.J., Isabel, N., Pedlar, J.H., et al., 2016. Traits to stay, traits to move: are view of functional traits to assess sensitivity and adaptive capacity of temperature and boreal trees to climate change. Environ. Rev., 24, 164–186.10.1139/er-2015-0072Search in Google Scholar

Aussenac, G., 2002. Ecology and ecophysiology of circum-mediterranean firs in the context of climate change. Ann. For. Sci., 59, 823–832.10.1051/forest:2002080Search in Google Scholar

Battipaglia, G., Saurer, M., Cherubini, P., Siegwolf, R.T.W., Cotrufo, M.F., 2009. Tree rings indicate different drought resistance of a native (Abies alba Mill.) and a non-native (Picea abies (L.) Karst.) species co-occurring at a dry site in Southern Italy. For. Ecol. Manag., 257, 820–828.10.1016/j.foreco.2008.10.015Search in Google Scholar

Begum, S., Nakaba, S., Yamagishi, Y., Oribe, Y., Funada, R., 2013. Regulation of cambial activity in relation to environmental conditions: understanding the role of temperature in wood formation of trees. Physiol. Plant., 147, 46–54.10.1111/j.1399-3054.2012.01663.x22680337Search in Google Scholar

Betsch, P., Bonal, D., Breda, N., Montpied, P., Peiffer, M., Tuzet, A., Granier, A., 2011. Drought effects on water relations in beech: the contribution of exchangeable water reservoirs. Agric. For. Meteorol., 151, 531–543.10.1016/j.agrformet.2010.12.008Search in Google Scholar

Bolte, A., Ammer, C., Löf, M., Nabuurs, G.J., Schall, P., Spathelf, P., Rock, J., 2009. Adaptive forest management in central Europe: climate change impacts, strategies and integrative concept. Scand. J. For. Res., 24, 473–482.10.1080/02827580903418224Search in Google Scholar

Bošeľa, M., Lukáč, M., Castagneri, D., Sedmák, R., Biber, P., Carrer, P. et al., 2018. Contrasting effects of environmental change on the radial growth of cooccurring beech and fir trees across Europe. Sci. Total Environ., 615, 1460–1469.10.1016/j.scitotenv.2017.09.09229055588Search in Google Scholar

Bouriaud, O., Popa, I., 2009. Comparative dendroclimatic study of Scots pine, Norway spruce, and silver fir in the Vrancea Range, Eastern Carpathian Mountains. Trees, 23, 1, 95–106.10.1007/s00468-008-0258-zSearch in Google Scholar

Bréda, N., Huc, R., Granier, A., Dreyer, E., 2006. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann. For. Sci., 63, 625–544.10.1051/forest:2006042Search in Google Scholar

Camarero, J.J., Gazol, A., Sangüesa-Barreda, G., Oliva, J., Vicente-Serrano, S.M., 2015. To die or not to die: early warnings of tree dieback in response to a severe drought. J. Ecol., 103, 44–57.10.1111/1365-2745.12295Search in Google Scholar

Caudullo, G., Tinner, W., de Rigo, D., 2016. Picea abies in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (Eds.): European Atlas of Forest Tree Species. European Commission, pp. 114–116.Search in Google Scholar

Čermák, J., Kučera, J., Bauerle, W.L., Phillips, N., Hinckley, T.M., 2007. Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees. Tree Physiol., 27, 181–198.10.1093/treephys/27.2.18117241961Search in Google Scholar

Chan, T., Holtta, T., Berninger, F., Makinen, H., Nojd, P., Mencuccini, M., Nikinmaa, E., 2016. Separating water-potential induced swelling and shrinking from measured radial stem variations reveals a cambial growth and osmotic concentration signal. Plant Cell Environ., 39, 233–244.10.1111/pce.1254125808847Search in Google Scholar

Dietrich, L., Zweifel, R., Kahmen, A., 2018. Daily stem diameter variations can predict the canopy water status of mature temperate trees. Tree Physiol., 38, 7, 941–952.10.1093/treephys/tpy02329554370Search in Google Scholar

Eilmann, B., Rigling, A., 2012. Tree-growth analyses to estimate tree species'drought tolerance. Tree Physiol., 32, 178–187.10.1093/treephys/tps00422363071Search in Google Scholar

Ehrenberger, W., Rüger, S., Fitzke, R., Vollenweider, P., Günthardt-Goerg, M.S., Kuster, T., Zimmermann, U., Arend, M., 2012. Concomitant dendrometer and leaf patch pressure probe measurements reveal the effect of microclimate and soil moisture on diurnal stem water and leaf turgor variations in young oak trees. Funct. Plant Biol., 39, 297–305.10.1071/FP1120632480782Search in Google Scholar

Ellenberger, H., 2009. Vegetation Ecology of Central Europe. Fourth edition. Cambridge University Press, Cambridge, UK.Search in Google Scholar

Geburek, T., 2010. Larix decidua Miller, 1768. In: Roloff, A., Weissgerber, H., Lang, U., Stimm, B. (Eds.): Bäume Mitteleuropas. Wiley, Weinheim, pp. 431–450.Search in Google Scholar

González-Rodríguez, Á.M., Brito, P., Lorenzo, J.R., Gruber, A., Oberhuber, W., Wieser, G., 2017. Seasonal cycles of sap flow and stem radius variation of Spartocytisus supranubius in the alpine zone of Tenerife, Canary Islands. Alp. Bot., 127, 97–108.10.1007/s00035-017-0189-7Search in Google Scholar

Gričar, J., Čufar, K., 2008. Seasonal dynamics of phloem and xylem formation in silver fir and Norway spruce as affected by drought. Russ. J. Plant Physiol., 55, 538–543.10.1134/S102144370804016XSearch in Google Scholar

Hartmann, H., 2011. Will a 385 million year-struggle for light become a struggle for water and for carbon? - How trees may cope with more frequent climate change-type drought events. Glob. Change Biol., 17, 642–655.10.1111/j.1365-2486.2010.02248.xSearch in Google Scholar

Hinckley, T.M., Lassoie, J.P., Running, S.W., 1978. Temporal and spatial variations in water status of forest trees. For. Sci. Monogr., 20, 1–72.Search in Google Scholar

Hlásny, T., Barcza, Z., Fabrika, M., Balázs, B., Chirkina, G., Pajtík, J., Sedmák, R., Turčáni, M., 2011. Climate change impacts on growth and carbon balance of forests in Central Europe. Clim. Res., 47, 219–236.10.3354/cr01024Search in Google Scholar

IPCC, 2013. Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.): Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.Search in Google Scholar

IPCC, 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Search in Google Scholar

Irvine, J., Grace, J., 1997. Continuous measurement of water tensions in the xylem of trees based on the elastic properties of wood. Planta, 202, 455–461.10.1007/s004250050149Search in Google Scholar

Irvine, J., Perks, M.P., Magnani, F., Grace, J., 1998. The response of Pinus sylvestris to drought: stomatal control of transpiration and hydraulic conductance. Tree Physiol., 18, 393–402.10.1093/treephys/18.6.39312651364Search in Google Scholar

Ježík, M., Blaženec, M., Kučera, J., Střelcová, K., Ditmarová, K., 2016. The response of intra-annual stem circumference increase of young European beech provenances to 2012–2014 weather variability. iForest – Biogeosciences and Forestry, 9, 6, 960–969.10.3832/ifor1829-009Search in Google Scholar

Kokfelt, U., Muscheler, R., 2012. Solar forcing of climate during the last millennium recorded in lake sediments from northern Sweden. Holocene, 2, 447–452.10.1177/0959683612460781Search in Google Scholar

Köcher, P., Horna, V., Leuschner, C., 2013. Stem water storage in five coexisting temperate broad-leaved tree species: significance, temporal dynamics and dependence on tree functional traits. Tree Physiol., 33, 817–832.10.1093/treephys/tpt05523999137Search in Google Scholar

Körner, C., Basler, D., 2010. Phenology under global warming. Science, 327, 5972, 1461–1462.10.1126/science.118647320299580Search in Google Scholar

Krakau, U.K., Liesebach, M., Aronen, T., Lelu-Walter, M.-A., Schneck, V., 2013. Scots Pine (Pinus sylvestris L.). In: Pâques, L.E. (Ed.): Forest Tree Breeding in Europe. Current State-of-the-Art and Perspectives. Springer, Dordrecht, New York.10.1007/978-94-007-6146-9_6Search in Google Scholar

Latreille, A., Davi, H., Huard, F., Pichot, Ch., 2017. Variability of the climate-radial growth relationship among Abies alba trees and populations along altitudinal gradients. For. Ecol. Manag., 396, 150–159.10.1016/j.foreco.2017.04.012Search in Google Scholar

Lindner, M., Garcia-Gonzalo, J., Kolstrom, M., Green, T., Reguera, R., Maroschek, M. et al., 2008. Impacts of Climate Change on European Forests and Options for Adaptation. European Forestry Institute, Joensuu, 173 p.Search in Google Scholar

McDowell, N.G., Allen, C.D., 2015. Darcy’s law predicts widespread forest mortality under climate warming. Nat. Clim. Change, 5, 669–672.10.1038/nclimate2641Search in Google Scholar

McDowell, N., Pockman, W.T., Allen, C.D., Breshears, D.D., Cobb, N., Kolb, T., et al., 2008. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol., 178, 719–739.10.1111/j.1469-8137.2008.02436.x18422905Search in Google Scholar

Mencuccini, M., Hölttä, T., Sevanto, S., Nikinmaa, E., 2013. Concurrent measurements of change in the bark and xylem diameters of trees reveal a phloem-generated turgor signal. New Phytol., 198, 1143–1154.10.1111/nph.1222423517018Search in Google Scholar

Nourtier, M., Chanzy, A., Cailleret, M., Yingge, X., Huc R., Davi, H., 2014. Transpiration of silver Fir (Abies alba mill.) during and after drought in relation to soil properties in a Mediterranean mountain area. Ann. For. Sci., 71, 683–695.10.1007/s13595-012-0229-9Search in Google Scholar

Oberhuber, W., Stumböck, M., Kofler, W., 1998. Climate-tree-growth relationships of Scots pine stands (Pinus sylvestris L.) exposed to soil dryness. Trees, 13, 19–27.10.1007/PL00009734Search in Google Scholar

Oberhuber, W., Gruber, A., Kofler, W., Swidrak, I., 2014. Radial stem growth in response to microclimate and soil moisture in a drought-prone mixed coniferous forest at an inner Alpine site. Eur. J. Forest Res., 133, 3, 467–479.10.1007/s10342-013-0777-z403576524883053Search in Google Scholar

Oberhuber, W., Hammerle, A., Kofler, W., 2015. Tree water status and growth of saplings and mature Norway spruce (Picea abies) at a dry distribution limit. Front. Plant Sci., 6, 703.10.3389/fpls.2015.00703456135726442019Search in Google Scholar

Oberhuber, W., Sehrt, M., Kitz, F., 2020. Hygroscopic properties of thin dead outher bark layer strongly influence stem diameter variations on short and long time scales in Scots pine (Pinus sylvestris L.). Agric. For. Meteorol., 290, Article Number 108026. DOI: 10.1016/j.agrformet.2020.10802610.1016/j.agrformet.2020.108026730502932565589Search in Google Scholar

Offenthaler, I., Hietz, P., Richter, H., 2001. Wood diameter indicates diurnal and long-term patterns of xylem water potential in Norway spruce. Trees, 15, 215–221.10.1007/s004680100090Search in Google Scholar

Pataki, D.E., Oren, R., Katul, G., Sigmon, J., 1998. Canopy conductance of Pinus taeda, Liquidambar styraciflua and Quercus phellos under varying atmospheric and soil water conditions. Tree Physiol., 18, 307–315.10.1093/treephys/18.5.30712651370Search in Google Scholar

Perämäki, M., Nikinmaa, E., Sevanto, S., Ilvesniemi, H., Siivola, S., Hari, P., Vesala, T., 2001. Tree stem diameter variations and transpiration in Scots pine: an analysis using a dynamic sap flow model. Tree Physiol., 21, 12–13, 889–897.10.1093/treephys/21.12-13.88911498336Search in Google Scholar

Percival, D.B., Walden, A.T., 2000. Wavelet Methods for Time Series Analysis. Cambridge University Press, Cambridge UK.10.1017/CBO9780511841040Search in Google Scholar

Požgaj, A., Kurjatko, S., Chovanec, D., Babiak, M., 1993. Štruktúra a vlastnosti dreva. 1st Ed. Príroda, Bratislava, 483 p.Search in Google Scholar

Rathgeber, C.B.K., Cuny, H.E., Fonti, P., 2016. Biological basis of tree ring formation a crash course. Front. Plant Sci., 7, 734.10.3389/fpls.2016.00734Search in Google Scholar

Rösch, A., Schmidbauer, H., 2018. WaveletComp1.1: A guided tour through the R package. 58 p.10.1016/j.irfa.2018.03.006Search in Google Scholar

Ruosch, M., Spahni, R., Joos, F., Henne, P.D., van der Knaap, W.O., Tinner, W., 2016. Past and future evolution of Abies alba forests in Europe - comparison of a dynamic vegetation model with palaeo data and observations. Glob. Chang. Biol., 22, 727–740.10.1111/gcb.13075Search in Google Scholar

Scholz, F.C., Bucci, S.J., Goldstein, G., Meinzer, F.C., Franco, A.C., Miralles-Wilhelm, F., 2008. Temporal dynamics of stem expansion and contraction in savanna trees: withdrawal and recharge of stored water. Tree Physiol., 28, 469–480.10.1093/treephys/28.3.469Search in Google Scholar

Schuster, R., Oberhuber, W., 2013. Age-dependent climate-growth relationships and regeneration of Picea abies in a drought-prone mixed coniferous forest in the Alps. Can. J. For. Res., 43, 609–618.10.1139/cjfr-2012-0426Search in Google Scholar

Spiecker, H., 2002. Tree rings and forest management in Europe. Dendrochronologia, 20, 1, 191–202.10.1078/1125-7865-00016Search in Google Scholar

Steppe, K., De Pauw, D.J.W., Lemeur, R., Vanrolleghem, P.A., 2006. A mathematical model linking tree sap flow dynamics to daily stem diameter fluctuations and radial stem growth. Tree Physiol., 26, 257–273.10.1093/treephys/26.3.257Search in Google Scholar

Steppe, K., Sterck, F., Deslauriers, A., 2015. Diel growth dynamics in tree stems: linking anatomy and ecophysiology. Trends Plant Sci., 20, 335–343.10.1016/j.tplants.2015.03.015Search in Google Scholar

Teskey, R., Wertin, T., Bauweraerts, I., Ameye, M., McGuire, M.A., Steppe, K., 2015. Responses of tree species to heat waves and extreme heat events. Plant Cell Environ., 38, 9, 1699–1712.10.1111/pce.12417Search in Google Scholar

Torrence, C., Compo, G.P., 1998. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79, 1, 61–78.10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2Search in Google Scholar

Turcotte, A., Rossi, S., Deslauriers, A., Krause, C., Morin, H., 2011. Dynamics of depletion and replenhishment of water storage in stem and roots of black spruce measured by dendrometers. Front. Plant Sci., 2, Article Number 21.10.3389/fpls.2011.00021335558522639583Search in Google Scholar

Usoltsev, V., Merganičová, K., Konôpka, B., Osmirko, A.A., Tsepordey, I.S., Chasovskikh, V.P., 2019. Fir (Abies spp.) stand biomass additive model for Eurasia sensitive to winter temperature and annual precipitation. Cent. Eur. For. J., 65, 166–172.10.2478/forj-2019-0017Search in Google Scholar

van der Maaten, E., van der Maaten-Theunissen, M., Smiljanić, M., Rossi, S., Simard, S., Wilmking, M., Deslauriers, A., Fonti, P., von Arx, G., Bouriaud, O., 2016. dendrometeR: Analyzing the pulse of tree in R. Dendrochronologia, 40, 12–16.10.1016/j.dendro.2016.06.001Search in Google Scholar

van der Maaten, E., van der Maaten-Theunissen, M., Smiljanić, M., Rossi, S., Simard, S., Wilmking, M., Deslauriers, A., Fonti, P., von Arx, G., Bouriaud, O., 2016. DendrometeR: Analyzing the pulse of tree in R. Dendrochronologia, 40, 12–16.10.1016/j.dendro.2016.06.001Search in Google Scholar

Vieira, J., Rossi, S., Campelo, F., Freitas, H., Nabais, C., 2013. Seasonal and daily cycles of stem radial variation of Pinus pinaster in a drought-prone environment. Agric. For. Meteorol., 180, 173–181.10.1016/j.agrformet.2013.06.009Search in Google Scholar

Vitali, V., Büntgen, U., Bauhus, J., 2017. Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south-western Germany. Glob. Chang. Biol., 23, 5108–5119.10.1111/gcb.1377428556403Search in Google Scholar

Will, R.E., Wilson, S.M., Zou, C.B., Hennessey, T.C., 2013. Increased vapour pressure deficit due to higher temperature leads to greater transpiration and faster mortality during drought for tree seedlings common to the forest–grassland ecotone. New Phytol., 200, 366–374.10.1111/nph.1232123718199Search in Google Scholar

Zeidler, A., Borůvka, V., Schönfelder, O., 2018. Comparison of wood quality of douglas fir and spruce from afforested agricultural land and permanent forest land in the Czech Republic. Forests, 9, 1. DOI: 10.3390/f901001310.3390/f9010013Search in Google Scholar

Zweifel, R., 2006. Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. J. Exp. Bot., 57, 6, 1445–1459.10.1093/jxb/erj12516556628Search in Google Scholar

Zweifel, R., Häsler, R., 2001. Dynamics of water storage in mature subalpine Picea abies: temporal and spatial patterns of change in stem radius. Tree Physiol., 21, 561–569.10.1093/treephys/21.9.56111390300Search in Google Scholar

Zweifel, R., Item, H., Hasler, R., 2000. Stem radius changes and their relation to stored water in stems of young Norway spruce trees. Trees, 15, 50–57.10.1007/s004680000072Search in Google Scholar

Zweifel, R., Item, H., Häsler, R., 2001. Link between diurnal stem radius changes and tree water relations. Tree Physiol., 21, 869–877.10.1093/treephys/21.12-13.86911498334Search in Google Scholar

Zweifel, R., Zimmermann, L., Newbery, D.M., 2005. Modelling tree water deficit from microclimate: an approach to quantifying drought stress. Tree Physiol., 25, 147–156.10.1093/treephys/25.2.14715574396Search in Google Scholar

Zweifel, R., Zimmermann, L., Zeugin, F., Newberry, D.M., 2006. Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. J. Exp. Bot., 57, 1445–1459.10.1093/jxb/erj12516556628Search in Google Scholar

Zweifel, R., Drew, D.M., Schweingruber, F., Downes, G.M., 2014. Xylem as the main origin of stem radius changes in Eucalyptus. Funct. Plant Biol., 41, 520–534.10.1071/FP1324032481010Search in Google Scholar

eISSN:
0042-790X
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Engineering, Introductions and Overviews, other