INFORMAZIONI SU QUESTO ARTICOLO

Cita

Alagna, V., Iovino, M., Bagarello, V., Mataix-Solera, J., Lichner, Ľ., 2017. Application of minidisk infiltrometer to estimate water repellency in Mediterranean pine forest soils. J. Hydrol. Hydromech., 65, 254–363.10.1515/johh-2017-0009Open DOISearch in Google Scholar

Beatty, S.M., Smith, J.E., 2010. Fractional wettability and contact angle dynamics in burned water repellent soils. J. Hydrol., 391, 97–108.10.1016/j.jhydrol.2010.07.007Search in Google Scholar

Beatty, S.M., Smith, J.E., 2013. Dynamic soil water repellency and infiltration in post-wildfire soils. Geoderma, 192, 160–172.10.1016/j.geoderma.2012.08.012Search in Google Scholar

Bens, O., Buczko, U., Sieber, S., Hüttl, R.F., 2006. Spatial variability of O layer thickness and humus forms under different pine beech-forest transformation stages in NE Germany. J. Plant Nutr. Soil Sci., 169, 5–15.10.1002/jpln.200521734Search in Google Scholar

Bens, O., Wahl, N.A., Fischer, H., Hüttl, R.F., 2007. Water infiltration and hydraulic conductivity in sandy cambisols: impacts of forest transformation on soil hydrological properties. Eur. J. Forest Res., 126, 101–109.10.1007/s10342-006-0133-7Open DOISearch in Google Scholar

Blanco-Canqui, H., Lal, R., 2009. Extent of soil water repellency under long-term no-till soils. Geoderma, 149, 171–180.10.1016/j.geoderma.2008.11.036Search in Google Scholar

Buczko, U., Bens, O., Fischer, H., Hüttl, R.F., 2002. Water repellency in sandy luvisols under different forest transformation stages in northeast Germany. Geoderma, 109, 1–18.10.1016/S0016-7061(02)00137-4Search in Google Scholar

Buczko, U., Bens, O., Hüttl, R.F., 2005. Variability of soil water repellency in sandy forest soils with different stand structure under Scots pine (Pinus sylvestris) and beech (Fagus sylvatica). Geoderma, 126, 317–336.10.1016/j.geoderma.2004.10.003Search in Google Scholar

Buczko, U., Bens, O., Hüttl, R.F., 2006. Water infiltration and hydrophobicity in forest soils of a pine–beech transformation chronosequence. J. Hydrol., 331, 383–395.10.1016/j.jhydrol.2006.05.023Search in Google Scholar

CAB International, 2002. Pines of Silvicultural Importance. CABI Publishing, Wallingford.Search in Google Scholar

Decagon, 2012. Mini Disk Infiltrometer User’s Manual, Version 10. Decagon Devices, Inc., Pullman, 18 p.Search in Google Scholar

Diehl, D., 2013. Soil water repellency: Dynamics of heterogeneous surfaces. Colloids and Surfaces A: Physicochem. Eng. Aspects, 432, 8–18.10.1016/j.colsurfa.2013.05.011Search in Google Scholar

de Jonge, L.W., Jacobsen, O.H., Moldrup, P., 1999. Soil water repellency: effects of water content, temperature, and particle size. Soil Sci. Soc. Am. J., 63, 437–442.10.2136/sssaj1999.03615995006300030003xOpen DOISearch in Google Scholar

Dekker, L.W., Ritsema, C.J., 1994. How water moves in a water repellent sandy soil. 1. Potential and actual water repellency. Water Resources Research, 30, 2507–2517.10.1029/94WR00749Open DOISearch in Google Scholar

Dekker, L.W., Ritsema, C.J., Oostindie, K., 2000. Extent and significance of water repellency in dunes along the Dutch coast. J. Hydrol., 231–232, 112–125.10.1016/S0022-1694(00)00188-8Search in Google Scholar

Dekker, L.W., Doerr, S.H., Oostindie, K., Ziogas, A.K., Ritsema, C.J., 2001. Water repellency and critical soil water content in a dune sand. Soil Sci. Soc. Am. J., 65, 1667–1674.10.2136/sssaj2001.1667Open DOISearch in Google Scholar

Doerr, S.H., 1998. On standardizing the “Water Drop Penetration Time” and the “Molarity of an Ethanol Droplet” techniques to classify soil hydrophobicity: a case study using medium textured soils. Earth Surf. Process. Landforms, 23, 663–668.10.1002/(SICI)1096-9837(199807)23:7<663::AID-ESP909>3.0.CO;2-6Open DOISearch in Google Scholar

Doerr, S.H., Shakesby, R.A., Walsh, R.P.D., 2000. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth-Sci. Rev., 51, 33–65.10.1016/S0012-8252(00)00011-8Open DOISearch in Google Scholar

Ellerbrock, R.H., Gerke, H.H., Bachmann, J., Goebel, M.-O., 2005. Composition of organic matter fractions for explaining wettability of three forest soils. Soil Sci. Soc. Am. J., 69, 57–66.10.2136/sssaj2005.0057Open DOISearch in Google Scholar

Fér, M., Leue, M., Kodešová, R., Gerke, H.H., Ellerbrock, R.H., 2016. Droplet infiltration dynamics and soil wettability related to soil organic matter of soil aggregate coatings. J. Hydrol. Hydromech., 64, 111–120.10.1515/johh-2016-0021Search in Google Scholar

Flores-Mangual, M.L., Lowery, B., Bockheim, J.G., Pagliari, P.H., Scharenbroch, B., 2013. Hydrophobicity of Sparta sand under different vegetation types in the Lower Wisconsin River Valley. Soil Sci. Soc. Am. J., 77, 1506–1516.10.2136/sssaj2012.0343Search in Google Scholar

Friendly, M., Meyer, D., 2015. Discrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data. Chapman & Hall. ISBN 9781498725835. Web site for book: ddar.datavis.ca10.1201/b19022Search in Google Scholar

Garcia, F.J.M., Dekker, L.W., Oostindie, K., Ritsema, C.J., 2005. Water repellency under natural conditions in sandy soils of southern Spain. Aust. J. Soil Res., 43, 291–296.10.1071/SR04089Open DOISearch in Google Scholar

Gee, G.W., Bauder, J.W., 1986. Particle-size analysis. In: Klute, A. (Ed.): Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods. Agron. Monogr. 9. 2nd ed. ASA and SSSA, Madison, WI, pp. 383–411.10.2136/sssabookser5.1.2ed.c15Search in Google Scholar

Gerke, H.H., Hangen, E., Schaaf, W., Hűttl, R.F., 2001. Spatial variability of potential water repellency in a lignitic mine soil afforested with Pinus nigra. Geoderma, 102, 255–274.10.1016/S0016-7061(01)00036-2Open DOISearch in Google Scholar

Haas, C., Gerke, H.H., Ellerbrock, R.H., Hallett, P.D., Horn, R., 2018. Relating soil organic matter composition to soil water repellency for soil biopore surfaces different in history from two Bt horizons of a Haplic Luvisol. Ecohydrology, 11, Article Number: e1949. https://doi.org/10.1002/eco.194910.1002/eco.1949Open DOISearch in Google Scholar

Hallett, P.D., Baumgartl, T., Young, I.M., 2001. Subcritical water repellency of aggregates from a range of soil management practices. Soil Sci. Soc. Am. J., 65, 184–190.10.2136/sssaj2001.651184xOpen DOISearch in Google Scholar

Hallett, P.D., Nunan, N., Douglas, J.T., Young, I.M., 2004. Millimeter-scale spatial variability in soil water sorptivity: scale, surface elevation, and subcritical repellency effects. Soil Sci. Soc. Am. J., 68, 352–358.10.2136/sssaj2004.3520Open DOISearch in Google Scholar

Islam, K.K., Patricia, S., Rinchen, Y., 2011. Broadleaved regeneration dynamics in the Pine plantation. Journal of Forest Science, 57, 432–438.10.17221/78/2010-JFSSearch in Google Scholar

Janusauskaite, D., Baliuckas, V., Dabkevicius, Z., 2013. Needle litter decomposition of native Pinus sylvestris L. and alien Pinus mugo at different ages affecting enzyme activities and soil properties on dune sands. Baltic Forestry, 19, 50–60.Search in Google Scholar

Keck, H., Felde, V.J.M.N.L., Drahorad, S.L., Felix-Henningsen, P., 2016. Biological soil crusts cause subcritical water repellency in a sand dune ecosystem located along a rainfall gradient in the NW Negev desert, Israel. J. Hydrol. Hydromech., 64, 133–140.10.1515/johh-2016-0001Open DOISearch in Google Scholar

Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259–263.10.1127/0941-2948/2006/0130Open DOISearch in Google Scholar

Krueger, J., Heitkötter, J., Leue, M., Schlüter, S., Vogel, H.-J., Marschner, B., Bachmann, J., 2018. Coupling of interfacial soil properties and bio-hydrological processes: The Flow Cell Concept. Ecohydrology, 11, Article Number: e2024. https://doi.org/10.1002/eco.202410.1002/eco.2024Open DOISearch in Google Scholar

Landis, J.R., Koch, G.G., 1977. The measurement of observer agreement for categorical data. Biometrics, 33, 159–174. URL: http://www.jstor.org/stable/252931010.2307/2529310Open DOISearch in Google Scholar

Lichner, Ľ., Hallett, P.D., Feeney, D., Ďugová, O., Šír, M., Tesař, M., 2007. Field measurement of the impact of hydrophobicity on soil water transport under different vegetation over time. Biologia, 62, 537–541.10.2478/s11756-007-0106-4Search in Google Scholar

Lichner, L., Hallett, P.D., Orfánus, T., Czachor, H., Rajkai, K., Šír, M., Tesař, M., 2010. Vegetation impact on the hydrology of an aeolian sandy soil in a continental climate. Ecohydrology, 3, 413–420.10.1002/eco.153Open DOISearch in Google Scholar

Lichner, Ľ., Holko, L., Zhukova, N., Schacht, K., Rajkai, K., Fodor, N., Sándor, R., 2012. Plants and biological soil crust influence the hydrophysical parameters and water flow in an aeolian sandy soil. J. Hydrol. Hydromech., 60, 309–318.10.2478/v10098-012-0027-yOpen DOISearch in Google Scholar

Lichner, Ľ., Capuliak, J., Zhukova, N., Holko, L., Czachor, H., Kollár J., 2013. Pines influence hydrophysical parameters and water flow in a sandy soil. Biologia, 68, 1104–1108.10.2478/s11756-013-0254-7Search in Google Scholar

Lichner, Ľ., Rodný, M., Schacht, K., Marschner, B., Chen, Y., Nadav, Y., Tarchitzky, J., 2017. Comparison of various techniques to estimate the extent and persistence of soil water repellency. Biologia, 72, 982–987.10.1515/biolog-2017-0112Search in Google Scholar

Lichner, L., Felde, V.J.M.N.L., Büdel, B., Leue, M., Gerke, H.H., Ellerbrock, R.H., Kollár, J., Rodný, M., Šurda, P., Fodor, N., Sándor, R., 2018. Effect of vegetation and its succession on water repellency in sandy soils. Ecohydrology, 11, Article Number: e1991. https://doi.org/10.1002/eco.199110.1002/eco.1991Open DOISearch in Google Scholar

Lowry, R., 2017. VassarStats - Website for Statistical Computation. http://vassarstats.net/index.htmlSearch in Google Scholar

Orfánus, T., Hallett, P.D., Bedrna, Z., Lichner, Ľ., Kňava, K., Sebíň, M., 2008. Small-scale variation of hydraulic properties in pine forest soil near Sekule, southwestern Slovakia. Soil Water Res., 3, S123–S129.10.17221/11/2008-SWRSearch in Google Scholar

Ovington, J.D., 1950. The afforestation of Culbin Sands. Journal of Ecology, 38, 303–319.10.2307/2256448Open DOISearch in Google Scholar

Papierowska, E., Matysiak, W., Szatyłowicz, J., Debaene, G., Urbanek, E., Kalisz, B., Łachacz, A., 2018. Compatibility of methods used for soil water repellency determination for organic and organo-mineral soils. Geoderma, 314, 221–231.10.1016/j.geoderma.2017.11.012Search in Google Scholar

Pekárová, P., Pekár, J., Lichner, Ľ., 2015. A new method for estimating soil water repellency index. Biologia, 70, 1450–1455.10.1515/biolog-2015-0178Search in Google Scholar

Philip, J.R., 1957. The theory of infiltration: 1. The infiltration equation and its solution. Soil Science, 83, 345–358.10.1097/00010694-195705000-00002Search in Google Scholar

Rodriguez-Alleres, M., Benito, E., 2011. Spatial and temporal variability of surface water repellency in sandy loam soils of NW Spain under Pinus pinaster and Eucalyptus globulus plantations. Hydrol. Process., 25, 3649–3658.10.1002/hyp.8091Search in Google Scholar

Rumpel, C., Knicker, H., Kögel-Knabner, I., Skjemstad, J.O., Hüttl, R.F., 1998. Types and chemical composition of organic matter in reforested lignite-rich mine soils. Geoderma, 86, 123–142.10.1016/S0016-7061(98)00036-6Search in Google Scholar

Siteur, K., Mao, J., Nierop, K.G.J., Rietkerk, M., Dekker, S.C., Eppinga, M.B., 2016. Soil water repellency: a potential driver of vegetation dynamics in coastal dunes. Ecosystems, 19, 1210–1224.10.1007/s10021-016-9995-9Open DOISearch in Google Scholar

Soil Survey Staff, 2014. Keys to Soil Taxonomy. 12th ed. NRCS, Washington, DC.Search in Google Scholar

Statgraphics, 2014. STATGRAPHICS Centurion XVII User Manual, 311pp. Statpoint Technologies, Inc., The Plains, Virginia, USA. www.STATGRAPHICS.comSearch in Google Scholar

Ward, P.R., Roper, M.M., Jongepier, R., Micin, S.F., 2015. Impact of crop residue retention and tillage on water infiltration into a water-repellent soil. Biologia, 70, 1480–1484.10.1515/biolog-2015-0170Search in Google Scholar

Will, G.M., Raliard, P., 1976. Radiata pine - soil degrader or improver? N.Z. Journal of Forestry, 21, 248–252.Search in Google Scholar

eISSN:
0042-790X
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Engineering, Introductions and Overviews, other