Accesso libero

Computational investigation of liquid-solid slurry flow through an expansion in a rectangular duct

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Antal, S.P., Lahey, R.T., Flaherty, J.E., 1991. Analysis of phase distribution in fully-developed laminar bubbly two-phase flow. Int. J. Multiphase Flow, 17, 635-652.10.1016/0301-9322(91)90029-3Search in Google Scholar

Burns, A.D., Frank, T., Hamill, I., Shi, J.M., 2004. The Favre averaged drag model for turbulent dispersion in Eulerian multi-phase flows. In: Proc. 5th Int. Conf. on Multiphase Flow ICMF2004, Yokohama, Japan.Search in Google Scholar

Chung, J.N., Troutt, T.R., 1988. Simulation of particle dispersion in an axisymmetric jet. J. Fluid Mech., 186, 199-222.10.1017/S0022112088000102Search in Google Scholar

Doron, P., Barnea, D., 1996. Flow pattern maps for solid-liquid flow in pipes. Int. J. Multiphase Flow, 22, 273-283.10.1016/0301-9322(95)00071-2Search in Google Scholar

Ekambara, K., Sanders, R.S., Nandakumar, K., Masliyah, J.H., 2009. Hydrodynamic simulation of horizontal slurry pipeline flow using ANSYS-CFX. Ind. Eng. Chem. Res., 48, 8159-8171.10.1021/ie801505zSearch in Google Scholar

Fessler, J.R., Eaton, J.K., 1999. Turbulence modification by particles in a backward-facing step flow. J. Fluid Mech., 394, 97-117.10.1017/S0022112099005741Search in Google Scholar

Founti, M., Klipfel, A., 1998. Experimental and computational investigations of nearly dense two-phase sudden expansion flows. Exp. Therm. Fluid Sci., 17, 27-36.10.1016/S0894-1777(97)10046-2Search in Google Scholar

Founti, M., Achimastos, T., Klipfel, A., 1999. Effects of increasing particle loading in axisymmetric, vertical, liquidsolid sudden expansion flow. ASME J. Fluids Eng., 121, n. 171.10.1115/1.2821998Search in Google Scholar

Frawley, P., O’Mahony, A.P., Geron, M., 2010. Comparison of Lagrangian and Eulerian simulations of slurry flows in a sudden expansion. ASME J. Fluids Eng., 132, 9, 191-301.10.1115/1.4002357Search in Google Scholar

Habib, M.A., Ben-Mansour, R., Badr, H.M., Said, S.A.M., 2008. Erosion and penetration rates of a pipe protruded in a sudden contraction. Computers & Fluids, 37, 146-160.10.1016/j.compfluid.2007.05.002Search in Google Scholar

Hardalupas, Y., Taylor, A.M.K.P., Whitelaw, J.H., 1992. Particle dispersion in a vertical round sudden-expansion flow. Phil. Trans. R. Soc. Lond. A, 341, 411-442.10.1098/rsta.1992.0110Search in Google Scholar

Kaushal, D.R., Tomita, Y., 2007. Experimental investigation for near-wall lift of coarser particles in slurry pipeline using γ- ray densitometer. Powder Technol., 172, 177-187.10.1016/j.powtec.2006.11.020Search in Google Scholar

Kaushal, D.R., Thinglas, Y., Tomita, Y., Kuchii, S., Tsukamoto, H., 2012. CFD modeling for pipeline flow of fine particles at high concentration. Int. J. Multiphase Flow, 43, 85-100.10.1016/j.ijmultiphaseflow.2012.03.005Search in Google Scholar

Kaushal, D.R., Kumar, A., Tomita, Y., Kuchii, S., Tsukamoto, H., 2013. Flow of mono-dispersed particles through horizontal bends. Int. J. Multiphase Flow, 52, 71-91.10.1016/j.ijmultiphaseflow.2012.12.009Search in Google Scholar

Launder, B.E., Spalding, D.B., 1972. Mathematical Models of Turbulence. Academic Press, London.Search in Google Scholar

Launder, B.E., Spalding, D.B., 1974. The numerical computation of turbulent flows. Comput. Meth. Appl. Mech. Eng., 3, 269-289.10.1016/0045-7825(74)90029-2Search in Google Scholar

Marjoanovic, P., Levy, A., Mason, D.J., 1999. An investigation of the flow structure through abrupt enlargement of circular pipe. Powder Technol., 104, 296-303.10.1016/S0032-5910(99)00107-2Search in Google Scholar

Matousek, V., 2002. Pressure drop and flow patterns in sandmixture pipes. Exp. Therm. Fluid Sci., 26, 693-702.10.1016/S0894-1777(02)00176-0Search in Google Scholar

Messa, G.V., 2013. Two-fluid model for solid-liquid flows in pipeline systems. PhD Thesis, Politecnico di Milano, Milano, Italy.Search in Google Scholar

Messa, G.V., Malavasi, S., 2013. Numerical investigation of solid-liquid slurry flow through an upward-facing step. J. Hydrol. Hydromech., 61, 126-133.10.2478/johh-2013-0017Search in Google Scholar

Messa, G.V., Malin, M.R., Malavasi, S., 2013. Numerical prediction of pressure gradient of slurry flows in horizontal pipes. In: Proceedings of the ASME 2013 Pressure Vessels and Piping Division Conference PVP2013, 14-18 July, Paris, France.10.1115/PVP2013-97460Search in Google Scholar

Messa, G.V., Malin, M.R., Malavasi, S., 2014. Numerical prediction of fully-suspended slurry flow in horizontal pipes. Powder Technol., doi: 10.1016/j.powtec.2014.02.005. In press.10.1016/j.powtec.2014.02.005Search in Google Scholar

Mohanarangam, K., Tu, T.J., 2009. Numerical study of particleturbulence interaction in liquid-particle flows. AIChE J., 55, 1298-1302.10.1002/aic.11729Search in Google Scholar

Mooney, M., 1951. The viscosity of a concentrated suspension of spherical particles. J. Colloid. Sci., 6, 162-170.10.1016/0095-8522(51)90036-0Search in Google Scholar

Nabil, T., El-Sawaf, I., El-Nahhas, K., 2013. Computational fluid dynamics simulation of the solid-liquid slurry flow in a pipeline. In: Proc. 17th International Water Technologies Conference IWTC17, 5-7 November, Istanbul, Turkey.Search in Google Scholar

Schlichting, H., 1960. Boundary Layer Theory. McGraw-Hill, New York.Search in Google Scholar

Shiller, L., Naumann, A., 1935. A drag coefficient correlation, Z. Ver. Deutsch. Ing., 77, 318-320.Search in Google Scholar

Shook, C.A., Bartosik, A.S., 1994. Particle-wall stresses in vertical slurry flows. Powder Technol., 81, 117-124.10.1016/0032-5910(94)02877-XSearch in Google Scholar

Spalding, D.B., 1980. Numerical computation of multi-phase fluid flow and heat transfer. In: Taylor, C., Morgan, K. (Eds): Recent Advances in Numerical Methods in Fluids. Pineridge Press Limited, Swansea, UK.Search in Google Scholar

Tomita, Y., Tashiro, H., Deguchi, K., Jotaki, T., 1980. Sudden expansion of gas-solid two-phase flow in a pipe. Phys. Fluids, 23, 663-666.10.1063/1.863049Search in Google Scholar

Vlasak, P., Chara, Z., 2011. Effect of particle size distribution and concentration on flow behavior of dense slurries. Particul. Sci. Technol., 29, 53-65.10.1080/02726351.2010.508509Search in Google Scholar

Vlasak, P., Kysela, B., Chara, Z., 2012. Flow structure of coarse-grained slurry in a horizontal pipe. J. Hydrol. Hydromech., 60, 115-124.10.2478/v10098-012-0010-7Search in Google Scholar

Wilson, K.C., Sanders, R.S., Gillies, R.G., Shook, C.A., 2010. Verification of the near-wall model for slurry flow. Powder Technol., 197, 247-253.10.1016/j.powtec.2009.09.023Search in Google Scholar

eISSN:
0042-790X
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Engineering, Introductions and Overviews, other