INFORMAZIONI SU QUESTO ARTICOLO

Cita

Abad, P., Gouzy, J., Aury, J.M., Castagnone-Sereno, P., Danchin, E.G., Deleury, E., Perfus-Barbeoch, L., Anthouard, V., Artiguenave, F., Blok, V.C. and Caillaud, M.C. 2008. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature biotechnology, 26(8):909–915. AbadP. GouzyJ. AuryJ.M. Castagnone-SerenoP. DanchinE.G. DeleuryE. Perfus-BarbeochL. AnthouardV. ArtiguenaveF. BlokV.C. CaillaudM.C. 2008 Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita Nature biotechnology 26 8 909 915 Search in Google Scholar

Abade, A. D. S., Porto, L. F., Ferreira, P. A., and Vidal, F. D. B. 2021. Nemanet: A convolutional neural network model for identification of nematodes soybean crop in Brazil. arXiv preprint arXiv:2103.03717. AbadeA. D. S. PortoL. F. FerreiraP. A. VidalF. D. B. 2021 Nemanet: A convolutional neural network model for identification of nematodes soybean crop in Brazil arXiv preprint arXiv:2103.03717 Search in Google Scholar

Akintayo, A., Tylka, G. L., Singh, A. K., Ganapathysubramanian, B., Singh, A., and Sarkar, S. 2018. A deep learning framework to discern and count microscopic nematode eggs. Scientific reports, 8(1):1–11. AkintayoA. TylkaG. L. SinghA. K. GanapathysubramanianB. SinghA. SarkarS. 2018 A deep learning framework to discern and count microscopic nematode eggs Scientific reports 8 1 1 11 Search in Google Scholar

Barker, K. R., Schmitt, D. P., and Imbriani, J. L. 1985. Nematode population dynamics with emphasis on determining damage potential to crops. An advanced treatise on Meloidogyne, 2:135–148. BarkerK. R. SchmittD. P. ImbrianiJ. L. 1985 Nematode population dynamics with emphasis on determining damage potential to crops An advanced treatise on Meloidogyne 2 135 148 Search in Google Scholar

Benjumea, A., Teeti, I., Cuzzolin, F., and Bradley, A. 2021. YOLO-Z: Improving small object detection in YOLOv5 for autonomous vehicles. arXiv preprint arXiv:2112.11798. BenjumeaA. TeetiI. CuzzolinF. BradleyA. 2021 YOLO-Z: Improving small object detection in YOLOv5 for autonomous vehicles arXiv preprint arXiv:2112.11798 Search in Google Scholar

Cheng, X., Zhang, Y., Chen, Y., Wu, Y., and Yue, Y. 2017. Pest identification via deep residual learning in complex background. Computers and Electronics in Agriculture, 141:351–356. ChengX. ZhangY. ChenY. WuY. YueY. 2017 Pest identification via deep residual learning in complex background Computers and Electronics in Agriculture 141 351 356 Search in Google Scholar

Chitwood, D.J. 2003. Research on plant-parasitic nematode biology conducted by the United States Department of Agriculture–Agricultural Research Service. Pest Management Science: Formerly Pesticide Science, 59(6–7):748–753. ChitwoodD.J. 2003 Research on plant-parasitic nematode biology conducted by the United States Department of Agriculture–Agricultural Research Service Pest Management Science: Formerly Pesticide Science 59 6–7 748 753 Search in Google Scholar

Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., and Tian, Q. 2019. Centernet: Keypoint triplets for object detection. Pp. 6569–6578 in Proceedings of the IEEE/CVF international conference on computer vision. DuanK. BaiS. XieL. QiH. HuangQ. TianQ. 2019 Centernet: Keypoint triplets for object detection 6569 6578 in Proceedings of the IEEE/CVF international conference on computer vision Search in Google Scholar

Dutta, A. (n.d.). VGG Image Annotator. https://annotate.officialstatistics.org/ DuttaA. (n.d.). VGG Image Annotator https://annotate.officialstatistics.org/ Search in Google Scholar

Gooris, J., and d’Herde, C. J. 1972. A method for the quantitative extraction of eggs and second stage juveniles of Meloidogyne spp. from soil. GoorisJ. d’HerdeC. J. 1972 A method for the quantitative extraction of eggs and second stage juveniles of Meloidogyne spp. from soil Search in Google Scholar

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. 2017. Densely connected convolutional networks. Pp. 4700–4708 in Proceedings of the IEEE conference on computer vision and pattern recognition. HuangG. LiuZ. Van Der MaatenL. WeinbergerK. Q. 2017 Densely connected convolutional networks 4700 4708 in Proceedings of the IEEE conference on computer vision and pattern recognition Search in Google Scholar

Johnson, D. 2008. How to Do Everything: Digital Camera [Online]; McGraw Hill Professional: New York; 336. JohnsonD. 2008 How to Do Everything: Digital Camera [Online] McGraw Hill Professional New York 336 Search in Google Scholar

Kasinathan, T., Singaraju, D., and Uyyala, S. R. 2021. Insect classification and detection in field crops using modern machine learning techniques. Information Processing in Agriculture, 8(3):446–457. KasinathanT. SingarajuD. UyyalaS. R. 2021 Insect classification and detection in field crops using modern machine learning techniques Information Processing in Agriculture 8 3 446 457 Search in Google Scholar

Kranse, O.P., Ko, I., Healey, R. et al. 2022. A low-cost and open-source solution to automate imaging and analysis of cyst nematode infection assays for Arabidopsis thaliana. Plant Methods 18:134. https://doi.org/10.1186/s13007-022-00963-2 KranseO.P. KoI. HealeyR. 2022 A low-cost and open-source solution to automate imaging and analysis of cyst nematode infection assays for Arabidopsis thaliana Plant Methods 18 134 https://doi.org/10.1186/s13007-022-00963-2 Search in Google Scholar

Lin, T. Y., Goyal, P., Girshick, R., He, K., and Dollár, P. 2017. Focal loss for dense object detection. Pp. 2980–2988 in Proceedings of the IEEE international conference on computer vision. LinT. Y. GoyalP. GirshickR. HeK. DollárP. 2017 Focal loss for dense object detection 2980 2988 in Proceedings of the IEEE international conference on computer vision Search in Google Scholar

Liu, H., Sun, F., Gu, J., and Deng, L. 2022. Sf-yolov5: A lightweight small object detection algorithm based on improved feature fusion mode. Sensors, 22(15):5817. LiuH. SunF. GuJ. DengL. 2022 Sf-yolov5: A lightweight small object detection algorithm based on improved feature fusion mode Sensors 22 15 5817 Search in Google Scholar

Patrick. 2022. Turnaround times for routine nematode testing expected to be long, Morning Ag Clips. Available at: https://www.morningagclips.com/turnaround-times-for-routine-nematode-testing-expected-to-be-long/ (Accessed: 28 June 2023). Patrick 2022 Turnaround times for routine nematode testing expected to be long Morning Ag Clips Available at: https://www.morningagclips.com/turnaround-times-for-routine-nematode-testing-expected-to-be-long/ (Accessed: 28 June 2023). Search in Google Scholar

Picek, L., Šulc, M., Matas, J., Heilmann-Clausen, J., Jeppesen, T. S., and Lind, E. 2022. Automatic fungi recognition: Deep learning meets mycology. Sensors, 22(2):633. PicekL. ŠulcM. MatasJ. Heilmann-ClausenJ. JeppesenT. S. LindE. 2022 Automatic fungi recognition: Deep learning meets mycology Sensors 22 2 633 Search in Google Scholar

Ray, S. F. 2002. Applied Photographic Optics, 3rd Edition; Focal Press: Oxford: 231–232. RayS. F. 2002 Applied Photographic Optics 3rd Edition Focal Press Oxford 231 232 Search in Google Scholar

Qing, X., Wang, Y., Lu, X., Li, H., Wang, X., Li, H., and Xie, X. 2022. NemaRec: A deep learning-based web application for nematode image identification and ecological indices calculation. European Journal of Soil Biology, 110:103408. QingX. WangY. LuX. LiH. WangX. LiH. XieX. 2022 NemaRec: A deep learning-based web application for nematode image identification and ecological indices calculation European Journal of Soil Biology 110 103408 Search in Google Scholar

Shabrina, N. H., Lika, R. A., and Indarti, S. (2023). Deep learning models for automatic identification of plant-parasitic nematode. Artificial Intelligence in Agriculture. ShabrinaN. H. LikaR. A. IndartiS. 2023 Deep learning models for automatic identification of plant-parasitic nematode Artificial Intelligence in Agriculture Search in Google Scholar

Tan, M., Pang, R., and Le, Q. V. 2019. Efficientdet: scalable and efficient object detection. arXiv. arXiv preprint arXiv:1911.09070, 10. TanM. PangR. LeQ. V. 2019 Efficientdet: scalable and efficient object detection arXiv. arXiv preprint arXiv:1911.09070, 10 Search in Google Scholar

Todd, T. C., and Jardine, D. J. 1993. Nematodes: management guidelines for Kansas crops. Cooperative Extension Service, Kansas State University. ToddT. C. JardineD. J. 1993 Nematodes: management guidelines for Kansas crops Cooperative Extension Service, Kansas State University Search in Google Scholar

Uhlemann, J., Cawley, O., and Kakouli-Duarte, T. 2020. Nematode Identification using Artificial Neural Networks. Pp. 13–22 in DeLTA. UhlemannJ. CawleyO. Kakouli-DuarteT. 2020 Nematode Identification using Artificial Neural Networks 13 22 in DeLTA Search in Google Scholar

Wei, Z., Duan, C., Song, X., Tian, Y., and Wang, H. 2020. Amrnet: Chips augmentation in aerial images object detection. arXiv preprint arXiv:2009.07168. WeiZ. DuanC. SongX. TianY. WangH. 2020 Amrnet: Chips augmentation in aerial images object detection arXiv preprint arXiv:2009.07168 Search in Google Scholar

Xie C., Wang R., Zhang J., Chen P., Dong W., Li R., Chen T., and Chen H. 2018. Multi-level learning features for automatic classification of field crop pests. Comput Electron Agric, 152:233–241. XieC. WangR. ZhangJ. ChenP. DongW. LiR. ChenT. ChenH. 2018 Multi-level learning features for automatic classification of field crop pests Comput Electron Agric 152 233 241 Search in Google Scholar

Zasada, I.A., Kitner, M., Wram, C., Wade, N., Ingham, R.E., Hafez, S., Mojtahedi, H., Chavoshi, S., and Hammack, N. 2019. Trends in occurrence, distribution, and population densities of plant-parasitic nematodes in the Pacific Northwest of the United States from 2012 to 2016. Plant Health Progress, 20(1):20–28. ZasadaI.A. KitnerM. WramC. WadeN. InghamR.E. HafezS. MojtahediH. ChavoshiS. HammackN. 2019 Trends in occurrence, distribution, and population densities of plant-parasitic nematodes in the Pacific Northwest of the United States from 2012 to 2016 Plant Health Progress 20 1 20 28 Search in Google Scholar

Zieliński, B., Sroka-Oleksiak, A., Rymarczyk, D., Piekarczyk, A., and Brzychczy-Włoch, M. 2020. Deep learning approach to describe and classify fungi microscopic images. PLoS ONE 15(6): e0234806. ZielińskiB. Sroka-OleksiakA. RymarczykD. PiekarczykA. Brzychczy-WłochM. 2020 Deep learning approach to describe and classify fungi microscopic images PLoS ONE 15 6 e0234806 Search in Google Scholar

eISSN:
2640-396X
Lingua:
Inglese
Frequenza di pubblicazione:
Volume Open
Argomenti della rivista:
Life Sciences, other