INFORMAZIONI SU QUESTO ARTICOLO

Cita

Thurlow S, Hind K, Oldroyd B, Sahota P, Taylor-Covill G. Effects of procedure, upright equilibrium time, sex and BMI on the precision of body fluid measurements using bioelectrical impedance analysis. Eur J Clin Nutr 2017;72:148–53. https://doi.org/10.1038/ejcn.2017.110Thurlow S Hind K Oldroyd B Sahota P Taylor-Covill G Effects of procedure, upright equilibrium time, sex and BMI on the precision of body fluid measurements using bioelectrical impedance analysis Eur J Clin Nutr 201772148 53 https://doi.org/10.1038/ejcn.2017.11010.1038/ejcn.2017.11028722029Search in Google Scholar

Baumgartner RN, Chumlea WC, Roche AF. Bioelectric impedance phase angle and body composition. Am J Clin Nutr 1988;48:16–23. https://doi.org/10.1093/ajcn/48.1.16.Baumgartner RN Chumlea WC Roche AF Bioelectric impedance phase angle and body composition Am J Clin Nutr 19884816 23 https://doi.org/10.1093/ajcn/48.1.1610.1093/ajcn/48.1.163389323Search in Google Scholar

Hirose S, Nakajima T, Nozawa N, Katayanagi S, Ishizaka H, Mizushima Y, et al. Phase angle as an indicator of sarcopenia, malnutrition, and cachexia in inpatients with cardiovascular diseases. J Clin Med 2020;9:E2554. https://doi.org/10.3390/jcm9082554.Hirose S Nakajima T Nozawa N Katayanagi S Ishizaka H Mizushima Y et al Phase angle as an indicator of sarcopenia, malnutrition, and cachexia in inpatients with cardiovascular diseases J Clin Med 20209E2554 https://doi.org/10.3390/jcm908255410.3390/jcm9082554746384632781732Search in Google Scholar

Gijsen M, Simons E, Cock PD, Malbrain MLNG, Wauters J, Spriet I. Reproducibility of fluid status measured by bioelectrical impedance analysis in healthy volunteers: a key requirement to monitor fluid status in the intensive care unit. Anestezjol Intensywna Ter 2021;53:193–9.Gijsen M Simons E Cock PD Malbrain MLNG Wauters J Spriet I Reproducibility of fluid status measured by bioelectrical impedance analysis in healthy volunteers: a key requirement to monitor fluid status in the intensive care unit Anestezjol Intensywna Ter 202153193 910.5114/ait.2021.10582634284553Search in Google Scholar

Wingo BC, Barry VG, Ellis AC, Gower BA. Comparison of segmental body composition estimated by bioelectrical impedance analysis and dual-energy X-ray absorptiometry. Clin Nutr ESPEN 2018;28:141–7. https://doi.org/10.1016/j.clnesp.2018.08.013.Wingo BC Barry VG Ellis AC Gower BA Comparison of segmental body composition estimated by bioelectrical impedance analysis and dual-energy X-ray absorptiometry Clin Nutr ESPEN 201828141 7 https://doi.org/10.1016/j.clnesp.2018.08.01310.1016/j.clnesp.2018.08.013622071030390872Search in Google Scholar

Thomas BJ, Ward LC, Cornish BH. Bioimpedance spectrometry in the determination of body water compartments: Accuracy and clinical significance. Appl Radiat Isot 1998;49:447–55. https://doi.org/10.1016/S0969-8043(97)00052-3.Thomas BJ Ward LC Cornish BH Bioimpedance spectrometry in the determination of body water compartments: Accuracy and clinical significance Appl Radiat Isot 199849447 55 https://doi.org/10.1016/S0969-8043(97)00052-310.1016/S0969-8043(97)00052-39569513Search in Google Scholar

Jensen B, Braun W, Both M, Gallagher D, Clark P, González DL, et al. Configuration of bioelectrical impedance measurements affects results for phase angle. Med Eng Phys 2020;84:10–5. https://doi.org/10.1016/j.medengphy.2020.07.021.Jensen B Braun W Both M Gallagher D Clark P González DL et al Configuration of bioelectrical impedance measurements affects results for phase angle Med Eng Phys 20208410 5 https://doi.org/10.1016/j.medengphy.2020.07.02110.1016/j.medengphy.2020.07.02132977906Search in Google Scholar

Dellinger JR, Johnson BA, Benavides ML, Moore ML, Stratton MT, Harty PS, et al. Agreement of bioelectrical resistance, reactance, and phase angle values from supine and standing bioimpedance analyzers. Physiol Meas 2021. https://doi.org/10.1088/1361-6579/abe6fa.Dellinger JR Johnson BA Benavides ML Moore ML Stratton MT Harty PS et al Agreement of bioelectrical resistance, reactance, and phase angle values from supine and standing bioimpedance analyzers Physiol Meas 2021 https://doi.org/10.1088/1361-6579/abe6fa10.1088/1361-6579/abe6fa33592586Search in Google Scholar

Gibson AL, Beam JR, Alencar MK, Zuhl MN, Mermier CM. Time course of supine and standing shifts in total body, intracellular and extracellular water for a sample of healthy adults. Eur J Clin Nutr 2015;69:14–9. https://doi.org/10.1038/ejcn.2013.269.Gibson AL Beam JR Alencar MK Zuhl MN Mermier CM Time course of supine and standing shifts in total body, intracellular and extracellular water for a sample of healthy adults Eur J Clin Nutr 20156914 9 https://doi.org/10.1038/ejcn.2013.26910.1038/ejcn.2013.26924398638Search in Google Scholar

Gibson AL, Holmes JC. Comparison of body water compartment values from a diverse adult sample using vertical and supine BIS analyzers. Int J Body Compos Res 2011;9:101–10.Gibson AL Holmes JC Comparison of body water compartment values from a diverse adult sample using vertical and supine BIS analyzers Int J Body Compos Res 20119101 10Search in Google Scholar

Lyons-Reid J, Ward LC, Tint M-T, Kenealy T, Godfrey KM, Chan S-Y, et al. The influence of body position on bioelectrical impedance spectroscopy measurements in young children. Sci Rep 2021;11:10346. https://doi.org/10.1038/s41598-021-89568-8.Lyons-Reid J Ward LC Tint M-T Kenealy T Godfrey KM Chan S-Y et al The influence of body position on bioelectrical impedance spectroscopy measurements in young children Sci Rep 20211110346 https://doi.org/10.1038/s41598-021-89568-810.1038/s41598-021-89568-8812194033990622Search in Google Scholar

Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Manuel Gómez J, et al. Bioelectrical impedance analysis—part II: utilization in clinical practice. Clin Nutr 2004;23:1430–53. https://doi.org/10.1016/j.clnu.2004.09.012.Kyle UG Bosaeus I De Lorenzo AD Deurenberg P Elia M Manuel Gómez J et al Bioelectrical impedance analysis—part II: utilization in clinical practice Clin Nutr 2004231430 53 https://doi.org/10.1016/j.clnu.2004.09.01210.1016/j.clnu.2004.09.01215556267Search in Google Scholar

National Institutes of Health. Bioelectrical impedance analysis in body composition measurement. Proceedings of a National Institutes of Health Technology Assessment Conference. Bethesda, Maryland, December 12-14, 1994. Am. J. Clin. Nutr., vol. 64, 1996, p. 387S-532S. https://doi.org/10.1093/ajcn/64.3.387S.National Institutes of Health Bioelectrical impedance analysis in body composition measurement. Proceedings of a National Institutes of Health Technology Assessment Conference Bethesda, Maryland December 12-14 1994 Am. J. Clin. Nutr., vol. 64, 1996, p 387S 532S https://doi.org/10.1093/ajcn/64.3.387S10.1093/ajcn/64.3.387S8928699Search in Google Scholar

Mattiello R, Amaral MA, Mundstock E, Ziegelmann PK. Reference values for the phase angle of the electrical bioimpedance: Systematic review and meta-analysis involving more than 250,000 subjects. Clin Nutr 2020;39:1411–7. https://doi.org/10.1016/j.clnu.2019.07.004.Mattiello R Amaral MA Mundstock E Ziegelmann PK Reference values for the phase angle of the electrical bioimpedance: Systematic review and meta-analysis involving more than 250,000 subjects Clin Nutr 2020391411 7 https://doi.org/10.1016/j.clnu.2019.07.00410.1016/j.clnu.2019.07.00431400996Search in Google Scholar

Barbosa-Silva MCG, Barros AJ, Wang J, Heymsfield SB, Pierson RN Jr. Bioelectrical impedance analysis: population reference values for phase angle by age and sex. Am J Clin Nutr 2005;82:49–52. https://doi.org/10.1093/ajcn/82.1.49.Barbosa-Silva MCG Barros AJ Wang J Heymsfield SB Pierson RN Jr Bioelectrical impedance analysis: population reference values for phase angle by age and sex Am J Clin Nutr 20058249 52 https://doi.org/10.1093/ajcn/82.1.4910.1093/ajcn/82.1.49Search in Google Scholar

Bosy-Westphal A, Danielzik S, Dörhöfer R-P, Later W, Wiese S, Müller MJ. Phase angle from bioelectrical impedance analysis: Population reference values by age, sex, and body mass index. J Parenter Enter Nutr 2006;30:309–16. https://doi.org/10.1177/0148607106030004309.Bosy-Westphal A Danielzik S Dörhöfer R-P Later W Wiese S Müller MJ Phase angle from bioelectrical impedance analysis: Population reference values by age, sex, and body mass index J Parenter Enter Nutr 200630309 16 https://doi.org/10.1177/014860710603000430910.1177/014860710603000430916804128Search in Google Scholar

Kushner RF. Bioelectrical impedance analysis: A review of principles and applications. J Am Coll Nutr 1992;11:199–209. https://doi.org/10.1080/07315724.1992.12098245.Kushner RF Bioelectrical impedance analysis: A review of principles and applications J Am Coll Nutr 199211199 209 https://doi.org/10.1080/07315724.1992.1209824510.1080/07315724.1992.12098245Search in Google Scholar

Slinde F, Bark A, Jansson J, Rossander-hulthén L. Bioelectrical impedance variation in healthy subjects during 12 h in the supine position. Clin Nutr 2003;22:153–7. https://doi.org/10.1054/clnu.2002.0616.Slinde F Bark A Jansson J Rossander-hulthén L Bioelectrical impedance variation in healthy subjects during 12 h in the supine position Clin Nutr 200322153 7 https://doi.org/10.1054/clnu.2002.061610.1054/clnu.2002.061612706132Search in Google Scholar

Sawka MN, Burke LM, Eichner R, Maughan RJ, Montain SJ, Stachenfeld NS. Exercise and fluid replacement. Med Sci Sports Exerc 2007;39:377–90. https://doi.org/10.1249/mss.0b013e31802ca597.Sawka MN Burke LM Eichner R Maughan RJ Montain SJ Stachenfeld NS Exercise and fluid replacement Med Sci Sports Exerc 200739377 90 https://doi.org/10.1249/mss.0b013e31802ca59710.1249/mss.0b013e31802ca59717277604Search in Google Scholar

Faul F, Erdfelder E, Lang A-G, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 2007;39:175– 91. https://doi.org/10.3758/bf03193146.Faul F Erdfelder E Lang A-G Buchner A G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences Behav Res Methods 200739175 91 https://doi.org/10.3758/bf0319314610.3758/BF0319314617695343Search in Google Scholar

Olejnik S, Algina J. Generalized eta and omega squared statistics: measures of effect size for some common research designs. Psychol Methods 2003;8:434–47.Olejnik S Algina J Generalized eta and omega squared statistics: measures of effect size for some common research designs Psychol Methods 20038434 4710.1037/1082-989X.8.4.43414664681Search in Google Scholar

Lakens D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol 2013;0. https://doi.org/10.3389/fpsyg.2013.00863.Lakens D Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs Front Psychol 2013 0 https://doi.org/10.3389/fpsyg.2013.0086310.3389/fpsyg.2013.00863384033124324449Search in Google Scholar

Cohen J. Statistical Power Analysis for the Behavioral Sciences. Routledge; 2013. https://doi.org/10.4324/9780203771587.Cohen J Statistical Power Analysis for the Behavioral Sciences Routledge 2013 https://doi.org/10.4324/978020377158710.4324/9780203771587Search in Google Scholar

Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet Lond Engl 1986;1:307–10.Bland JM Altman DG Statistical methods for assessing agreement between two methods of clinical measurement Lancet Lond Engl 19861307 1010.1016/j.ijnurstu.2009.10.001Search in Google Scholar

Giavarina D. Understanding Bland Altman analysis. Biochem Medica 2015;25:141. https://doi.org/10.11613/BM.2015.015.Giavarina D Understanding Bland Altman analysis Biochem Medica 201525141 https://doi.org/10.11613/BM.2015.01510.11613/BM.2015.015447009526110027Search in Google Scholar