Accesso libero

Multichannel cell detection in microcompartments by means of true parallel measurements using the Solartron S-1260

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Gimsa J, Muller T, Schnelle T, Fuhr G. Dielectric spectroscopy of single human erythrocytes at physiological ionic strength: dispersion of the cytoplasm. Biophys J. 1996;71(1):495–506. https://doi.org/10.1016/S0006-3495(96)79251-2 GimsaJ MullerT SchnelleT FuhrG Dielectric spectroscopy of single human erythrocytes at physiological ionic strength: dispersion of the cytoplasm Biophys J 1996 71 1 495 506 https://doi.org/10.1016/S0006-3495(96)79251-2 10.1016/S0006-3495(96)79251-2 Search in Google Scholar

Gawad S, Schild L, Renaud PH. Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing. Lab Chip. 2001;1(1):76–82. https://doi.org/10.1039/b103933b GawadS SchildL RenaudPH Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing Lab Chip 2001 1 1 76 82 https://doi.org/10.1039/b103933b 10.1039/b103933b15100895 Search in Google Scholar

Holmes D, Pettgrew D, Reccius CH, Gwyer JD, van Berkel C, Holloway J, et al. Leukocyte analysis and differentiation using high speed microfluidic single cell impedance spectroscopy. Lab on a Chip. 2009;9:2881–9. https://doi.org/10.1039/b910053a HolmesD PettgrewD RecciusCH GwyerJD van BerkelC HollowayJ Leukocyte analysis and differentiation using high speed microfluidic single cell impedance spectroscopy Lab on a Chip 2009 9 2881 9 https://doi.org/10.1039/b910053a 10.1039/b910053a19789739 Search in Google Scholar

Sun T, van Berkel C, Green NG, Morgan H. Digital signal processing methods for impedance microfluidic cytometry. Microfluidics and Nanofluidics. 2009;6(2):179–87. https://doi.org/10.1007/s10404-008-0315-3 SunT van BerkelC GreenNG MorganH Digital signal processing methods for impedance microfluidic cytometry Microfluidics and Nanofluidics 2009 6 2 179 87 https://doi.org/10.1007/s10404-008-0315-3 10.1007/s10404-008-0315-3 Search in Google Scholar

Thein M, Asphahani F, Cheng A, Buckmaster R, Zhang M, Xu J. Response characteristics of single-cell impedance sensors employed with surface-modified microelectrodes. Biosensors and Bioelectronics. 2010;25:1963–9. https://doi.org/10.1016/j.bios.2010.01.023 TheinM AsphahaniF ChengA BuckmasterR ZhangM XuJ Response characteristics of single-cell impedance sensors employed with surface-modified microelectrodes Biosensors and Bioelectronics 2010 25 1963 9 https://doi.org/10.1016/j.bios.2010.01.023 10.1016/j.bios.2010.01.023286228320176469 Search in Google Scholar

Hassan U, Bashir R. Electrical cell counting process characterization in a microfluidic impedance cytometer. Biomedical Microdevices. 2014 2014/10/01;16(5):697–704. https://doi.org/10.1007/s10544-014-9874-0 HassanU BashirR Electrical cell counting process characterization in a microfluidic impedance cytometer Biomedical Microdevices 2014 2014/10/01 16 5 697 704 https://doi.org/10.1007/s10544-014-9874-0 10.1007/s10544-014-9874-024898912 Search in Google Scholar

Mernier G, Duqi E, Renaud P. Characterization of a novel impedance cytometer design and its integration with lateral focusing by dielectrophoresis. Lab on a Chip. 2012;12(21):4344–9. https://doi.org/10.1039/c2lc40551b MernierG DuqiE RenaudP Characterization of a novel impedance cytometer design and its integration with lateral focusing by dielectrophoresis Lab on a Chip 2012 12 21 4344 9 https://doi.org/10.1039/c2lc40551b 10.1039/c2lc40551b22899298 Search in Google Scholar

Haandbæk N, Bürgel SC, Heer F, Hierlemann A. Characterization of subcellular morphology of single yeast cells using high frequency microfluidic impedance cytometer. Lab on a Chip. 2014;14(2):369–77. https://doi.org/10.1039/C3LC50866H HaandbækN BürgelSC HeerF HierlemannA Characterization of subcellular morphology of single yeast cells using high frequency microfluidic impedance cytometer Lab on a Chip 2014 14 2 369 77 https://doi.org/10.1039/C3LC50866H 10.1039/C3LC50866H24264643 Search in Google Scholar

Grimnes S, Martinsen OG. Bioimpedance and Bioelectricity Basics: Academic Press; 2015. https://doi.org/10.1016/B978-0-12-411470-8.00011-8 GrimnesS MartinsenOG Bioimpedance and Bioelectricity Basics Academic Press 2015 https://doi.org/10.1016/B978-0-12-411470-8.00011-8 10.1016/B978-0-12-411470-8.00011-8 Search in Google Scholar

AMETEK.Inc. 2020; Available from: https://www.ameteksi.com/products/materials-testing-systems/1260a-impedance-gain-phase-analyzer. AMETEK.Inc 2020 Available from: https://www.ameteksi.com/products/materials-testing-systems/1260a-impedance-gain-phase-analyzer. Search in Google Scholar

Nguyen TA, Yin T-I, Reyes D, Urban GA. Microfluidic chip with integrated electrical cell-impedance sensing for monitoring single cancer cell migration in three-dimensional matrixes. Analytical Chemistry. 2013;85(22):11068–76. https://doi.org/10.1021/ac402761s NguyenTA YinT-I ReyesD UrbanGA Microfluidic chip with integrated electrical cell-impedance sensing for monitoring single cancer cell migration in three-dimensional matrixes Analytical Chemistry 2013 85 22 11068 76 https://doi.org/10.1021/ac402761s 10.1021/ac402761s24117341 Search in Google Scholar

Anh-Nguyen T, Tiberius B, Pliquett U, Urban GA. An impedance biosensor for monitoring cancer cell attachment, spreading and drug-induced apoptosis. Sensors and Actuators A: Physical. 2016;241:231–7. https://doi.org/10.1016/j.sna.2016.02.035 Anh-NguyenT TiberiusB PliquettU UrbanGA An impedance biosensor for monitoring cancer cell attachment, spreading and drug-induced apoptosis Sensors and Actuators A: Physical 2016 241 231 7 https://doi.org/10.1016/j.sna.2016.02.035 10.1016/j.sna.2016.02.035 Search in Google Scholar