Accesso libero

Narrowband array processing beamforming technique for electrical impedance tomography

INFORMAZIONI SU QUESTO ARTICOLO

Cita

D. S. Holder, “Electrical Impedance Tomography: Methods, History and Applications”, CRC Press, 2004.HolderD. S.“Electrical Impedance Tomography: Methods, History and Applications”CRC Press200410.1201/9781420034462.ch4Search in Google Scholar

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The Twente Photoacoustic Mammoscope: system overview and performance.,” Phys. Med. Biol., vol. 50, no. 11, pp. 2543–57, 2005. https://doi.org/10.1088/0031-9155/50/11/007ManoharS.KharineA.van HespenJ. C. G.SteenbergenW.van LeeuwenT. G.“The Twente Photoacoustic Mammoscope: system overview and performance.,”Phys. Med. Biol.50112543572005https://doi.org/10.1088/0031-9155/50/11/00710.1088/0031-9155/50/11/00715901953Search in Google Scholar

E. A. Thompson, J. Xiang, and Y. Wang, “Frequency-spatial beamformer for MEG source localization,” Biomed. Signal Process. Control, vol. 18, pp. 263–273, 2015. https://doi.org/10.1016/j.bspc.2015.01.004ThompsonE. A.XiangJ.WangY.“Frequency-spatial beamformer for MEG source localization,”Biomed. Signal Process. Control182632732015https://doi.org/10.1016/j.bspc.2015.01.00410.1016/j.bspc.2015.01.004Search in Google Scholar

M. Viberg, “Introduction to Array Processing”, Academic Press Library in Signal Processing, vol. 3, pp. 463–502, 2014. https://doi.org/10.1016/B978-0-12-411597-2.00011-4VibergM.“Introduction to Array Processing”Academic Press Library in Signal Processing34635022014https://doi.org/10.1016/B978-0-12-411597-2.00011-410.1016/B978-0-12-411597-2.00011-4Search in Google Scholar

B. D. Van Veen and K. M. Buckley, “Beamforming: a versatile approach to spatial filtering,” IEEE ASSP Mag., vol. 5, no. April, pp. 4–24, 1988. https://doi.org/10.1109/53.665Van VeenB. D.BuckleyK. M.“Beamforming: a versatile approach to spatial filtering,”IEEE ASSP Mag.5April4241988https://doi.org/10.1109/53.66510.1109/53.665Search in Google Scholar

E. J. Bond, X. Li, S. C. Hagness, and B. D. Van Veen, “Microwave imaging via space-time beamforming for early detection of breast cancer,” IEEE Trans. Antennas Propag., vol. 51, no. 8, pp. 1690–1705, 2003. https://doi.org/10.1109/tap.2003.815446BondE. J.LiX.HagnessS. C.Van VeenB. D.“Microwave imaging via space-time beamforming for early detection of breast cancer,”IEEE Trans. Antennas Propag.518169017052003https://doi.org/10.1109/tap.2003.81544610.1109/TAP.2003.815446Search in Google Scholar

T. F. Zanoon and M. Z. Abdullah, “Early stage breast cancer detection by means of time-domain ultra-wide band sensing,” Meas. Sci. Technol., vol. 22, no. 11, p. 114016, 2011. https://doi.org/10.1088/0957-0233/22/11/114016ZanoonT. F.AbdullahM. Z.“Early stage breast cancer detection by means of time-domain ultra-wide band sensing,”Meas. Sci. Technol.2211p. 1140162011https://doi.org/10.1088/0957-0233/22/11/11401610.1088/0957-0233/22/11/114016Search in Google Scholar

N. Cao and A. Nehorai, “Tumor localization using diffuse optical tomography and linearly constrained minimum variance beamforming,” vol. 15, no. 3, pp. 896–909, 2007. https://doi.org/10.1364/oe.15.000896CaoN.NehoraiA.“Tumor localization using diffuse optical tomography and linearly constrained minimum variance beamforming,”1538969092007https://doi.org/10.1364/oe.15.00089610.1364/OE.15.000896Search in Google Scholar

C. S. Lengsfeld and R. A. Shoureshi, “System and Method for Beamforming in Soft-Field Tomography,” US 2013/0109962 A1, 2008.LengsfeldC. S.ShoureshiR. A.“System and Method for Beamforming in Soft-Field Tomography,”US 2013/0109962 A12008Search in Google Scholar

P. Lafortune and R. Aris, “Linearly constrained minimum variance spatial filtering for localization of conductivity changes in electrical impedance tomography,” Int. J. Numer. Method. Biomed. Eng., vol. 28, no. 1, pp. 72–86, 2015. https://doi.org/10.1002/cnm.2703LafortuneP.ArisR.“Linearly constrained minimum variance spatial filtering for localization of conductivity changes in electrical impedance tomography,”Int. J. Numer. Method. Biomed. Eng.28172862015https://doi.org/10.1002/cnm.270310.1002/cnm.149425830206Search in Google Scholar

J. S. Lioumbas, A Chatzidafni, and T. D. Karapantsios, “Spatial considerations on electrical resistance tomography measurements,” Meas. Sci. Technol., vol. 25, no. 5, p. 055303 (12 pp.), 2014. https://doi.org/10.1088/0957-0233/25/5/055303LioumbasJ. S.ChatzidafniAKarapantsiosT. D.“Spatial considerations on electrical resistance tomography measurements,”Meas. Sci. Technol.255p. 055303 (12 pp.)2014https://doi.org/10.1088/0957-0233/25/5/05530310.1088/0957-0233/25/5/055303Search in Google Scholar

G. J. Saulnier, R. S. Blue, J. C. Newell, D. Isaacson, and P. M. Edic, “Electrical impedance tomography,” IEEE Signal Process. Mag., vol. 18, no. 6, pp. 31–43, 2001. https://doi.org/10.1109/79.962276SaulnierG. J.BlueR. S.NewellJ. C.IsaacsonD.EdicP. M.“Electrical impedance tomography,”IEEE Signal Process. Mag.18631432001https://doi.org/10.1109/79.96227610.1109/79.962276Search in Google Scholar

C. Venkatratnam and N. Farrukh, “A Novel Numerical Technique to Enhance the Spatial Resolution of Electrical Impedance Tomography Systems,” IJAER, vol. 10, no. 19, pp. 40659–40662, 2015.VenkatratnamC.FarrukhN.“A Novel Numerical Technique to Enhance the Spatial Resolution of Electrical Impedance Tomography Systems,”IJAER101940659406622015Search in Google Scholar

C. Venkatratnam and N. Farrukh, “Electrode considerations, excitation methods and measurement techniques for electrical impedance tomography,” IFMBE Proc., vol. 56, pp. 1–5, 2016. https://doi.org/10.1007/978-981-10-0266-3_1VenkatratnamC.FarrukhN.“Electrode considerations, excitation methods and measurement techniques for electrical impedance tomography,”IFMBE Proc.56152016https://doi.org/10.1007/978-981-10-0266-3_110.1007/978-981-10-0266-3_1Search in Google Scholar

R. M. Fish and L. a Geddes, “Conduction of electrical current to and through the human body: a review.,” Eplasty, vol. 9, p. e44, 2009.FishR. M.GeddesL. a“Conduction of electrical current to and through the human body: a review.,”Eplasty9e442009Search in Google Scholar

M. Sikora, Ryszard Zenczak, “Optimum selection of frequency for medical equipment using electrical impedance tomography,” Int. J. Appl. Electromagn. Mech., vol. 10, no. 2, pp. 130–153, 1999. https://doi.org/10.3233/jae-1999-136M. Sikora, Ryszard Zenczak,“Optimum selection of frequency for medical equipment using electrical impedance tomography,”Int. J. Appl. Electromagn. Mech.1021301531999https://doi.org/10.3233/jae-1999-13610.3233/JAE-1999-136Search in Google Scholar

S. C. Chapra and R. P. Canale, “Numerical methods for engineers,” Math. Comput. Simul., vol. 33, no. 3, p. 260, 2015.ChapraS. C.CanaleR. P.“Numerical methods for engineers,”Math. Comput. Simul.333260201510.1016/0378-4754(91)90127-OSearch in Google Scholar

Adler and W. R. B. Lionheart, “Uses and abuses of EIDORS: an extensible software base for EIT.,” Physiol. Meas., vol. 27, no. 5, pp. S25–S42, 2006. https://doi.org/10.1088/0967-3334/27/5/s03AdlerLionheartW. R. B.“Uses and abuses of EIDORS: an extensible software base for EIT.,”Physiol. Meas.275S25S422006https://doi.org/10.1088/0967-3334/27/5/s0310.1088/0967-3334/27/5/S0316636416Search in Google Scholar

C.-N. Huang, F.-M. Yu, and H.-Y. Chung, “Rotational electrical impedance tomography,” Meas. Sci. Technol., vol. 18, no. 9, pp. 2958–2966, 2007. https://doi.org/10.1088/0957-0233/18/9/028HuangC.-N.YuF.-M.ChungH.-Y.“Rotational electrical impedance tomography,”Meas. Sci. Technol.189295829662007https://doi.org/10.1088/0957-0233/18/9/02810.1088/0957-0233/18/9/028Search in Google Scholar

J. C. N. Margaret, Cheney David, “Electrical Impedance Tomography,” SIAM Rev., vol. 41, no. 1, pp. 85–101, 1999.J. C. N. Margaret, Cheney David,“Electrical Impedance Tomography,”SIAM Rev.41185101199910.1137/S0036144598333613Search in Google Scholar

Cao et al. “A novel time-difference electrical impedance tomography algorithm using multi-frequency information” BioMedical Engineering OnLine., vol. 18, 84, 2019.Cao“A novel time-difference electrical impedance tomography algorithm using multi-frequency information”BioMedical Engineering OnLine.1884201910.1186/s12938-019-0703-9666459631358013Search in Google Scholar

Vedula et al. “Learning beamforming in ultrasound imaging” Proceedings of Machine Learning Research, vol. 102, pp.493–511, 2019.Vedula“Learning beamforming in ultrasound imaging”Proceedings of Machine Learning Research1024935112019Search in Google Scholar