Accesso libero

Detection and elimination of signal errors due to unintentional movements in biomedical magnetic induction tomography spectroscopy (MITS)

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Korzhenevskii AV, Cherepenin VA. Magnetic induction tomography. J Commun Technol Electron. 1997; 42(4): 46974.KorzhenevskiiAVCherepeninVAMagnetic induction tomographyJ Commun Technol Electron199742446974Search in Google Scholar

Griffiths H, Stewart WR, Gough W. Magnetic induction tomography: a measuring system for biological tissues. Ann NY Acad Sci. 1999; 873(1): 335-45. https://doi.org/10.1111/j.1749-6632.1999.tb09481.xGriffithsHStewartWRGoughWMagnetic induction tomography: a measuring system for biological tissuesAnn NY Acad Sci1999873133545https://doi.org/10.1111/j.1749-6632.1999.tb09481.x10.1111/j.1749-6632.1999.tb09481.x10372181Search in Google Scholar

Korjenevsky A, Cherepenin V, Sapetsky S. Magnetic induction tomography: experimental realisation. Physiol Meas. 2000; 21(1): 89-94. https://doi.org/10.1088/0967-3334/21/1/311KorjenevskyACherepeninVSapetskySMagnetic induction tomography: experimental realisationPhysiol Meas20002118994https://doi.org/10.1088/0967-3334/21/1/31110.1088/0967-3334/21/1/31110720003Search in Google Scholar

Scharfetter H, Lackner HK, Rosell J. Magnetic induction tomography: hardware for multi-frequency measurements in biological tissues. Physiol Meas. 2001; 22(1): 131-46. https://doi.org/10.1088/0967-3334/22/1/317ScharfetterHLacknerHKRosellJMagnetic induction tomography: hardware for multi-frequency measurements in biological tissuesPhysiol Meas200122113146https://doi.org/10.1088/0967-3334/22/1/31710.1088/0967-3334/22/1/31711236874Search in Google Scholar

Scharfetter H, Casa-as R, Rosell J. Biological tissue characterization by magnetic induction spectroscopy (MIS): requirements and limitations. IEEE Trans Biomed Eng. 2003; 50(7): 870-80. https://doi.org/10.1109/TBME.2003.813533ScharfetterHCasa-asRRosellJBiological tissue characterization by magnetic induction spectroscopy (MIS): requirements and limitationsIEEE Trans Biomed Eng200350787080https://doi.org/10.1109/TBME.2003.81353310.1109/TBME.2003.81353312848355Search in Google Scholar

Lanfermann G, Thijs JAJ, Pinter R, Igney CH. Method and apparatus for inductively measuring the bio-impedance of a users body. Patent Application Publication: US 2008/0194982 A1; Aug. 14, 2008.LanfermannGThijsJAJPinterRIgneyCHMethod and apparatus for inductively measuring the bio-impedance of a users bodyPatent Application Publication: US2008/0194982 A1; Aug142008Search in Google Scholar

Scharfetter H, Issa S, Gürsoy D. Tracking of object movements for artefact suppression in magnetic induction tomography (MIT). J Phys: Conf Ser. 2010; 224(1): 012040. https://doi.org/10.1088/1742-6596/224/1/012040ScharfetterHIssaSGürsoyDTracking of object movements for artefact suppression in magnetic induction tomography (MIT)J Phys: Conf Ser20102241012040https://doi.org/10.1088/1742-6596/224/1/01204010.1088/1742-6596/224/1/012040Search in Google Scholar

Griffiths H. Magnetic induction tomography. Meas Sci Technol. 2001; 12(8): 1126-31. https://doi.org/10.1088/0957-0233/12/8/319GriffithsHMagnetic induction tomographyMeas Sci Technol2001128112631https://doi.org/10.1088/0957-0233/12/8/31910.1201/9781420034462.pt4Search in Google Scholar

Griffiths H. Magnetic induction tomography. In: Holder DS editor. Electrical Impedance Tomography: Methods, History and Applications (Series in Medical Physics and Biomedical Engineering). IOP Publishing: Bristol and Philadelphia. 2005; pp. 213-38.GriffithsHMagnetic induction tomographyHolder DS editor. Electrical Impedance Tomography: Methods, History and Applications (Series in Medical Physics and Biomedical Engineering)IOP PublishingBristol and Philadelphia20052133810.1201/9781420034462.pt4Search in Google Scholar

Scharfetter H, Köstinger A, Issa S. Hardware for quasi-single-shot multifrequency magnetic induction tomography (MIT): the Graz Mk2 system. Physiol Meas. 2008; 29(6): 431-43. https://doi.org/10.1088/0967-3334/29/6/S36ScharfetterHKöstingerAIssaSHardware for quasi-single-shot multifrequency magnetic induction tomography (MIT): the Graz Mk2 systemPhysiol Meas200829643143https://doi.org/10.1088/0967-3334/29/6/S3610.1088/0967-3334/29/6/S3618544831Search in Google Scholar

Watson S, Morris A, Williams RJ, Griffiths H, Gough W. A primary field compensation scheme for planar array magnetic induction tomography. Physiol Meas. 2004; 25(5): 271-9. https://doi.org/10.1088/0967-3334/25/1/031WatsonSMorrisAWilliamsRJGriffithsHGoughWA primary field compensation scheme for planar array magnetic induction tomographyPhysiol Meas20042552719https://doi.org/10.1088/0967-3334/25/1/03110.1088/0967-3334/25/1/03115005321Search in Google Scholar

Scharfetter H, Merwa R, Pilz K. A new type of gradiometer for the receiving circuit of magnetic induction tomography (MIT). Physiol Meas. 2005; 26(2): 307-18. https://doi.org/10.1088/0967-3334/26/2/028ScharfetterHMerwaRPilzKA new type of gradiometer for the receiving circuit of magnetic induction tomography (MIT)Physiol Meas200526230718https://doi.org/10.1088/0967-3334/26/2/02810.1088/0967-3334/26/2/02815798243Search in Google Scholar

Scharfetter H, Issa S. Reduction of low-frequency noise in magnetic induction tomography systems. IFMBE Proc. 2008; 22: 752-755. https://doi.org/10.1007/978-3-540-89208-3_180ScharfetterHIssaSReduction of low-frequency noise in magnetic induction tomography systemsIFMBE Proc200822752755https://doi.org/10.1007/978-3-540-89208-3_18010.1007/978-3-540-89208-3_180Search in Google Scholar