[
Agostini, A., Colauzzi, M., & Amaducci, S. (2021). Innovative agrivoltaic systems to produce sustainable energy: An economic and environmental assessment. Applied Energy, 281, 116102. https://doi.org/10.1016/j.apenergy.2020.116102
]Search in Google Scholar
[
Agyekum, E. B. (2024). A comprehensive review of two decades of research on agrivoltaics, a promising new method for electricity and food production. Sustainable Energy Technologies and Assessments, 72, 104055. https://doi.org/10.1016/j.seta.2024.104055
]Search in Google Scholar
[
Bhattacharya, M., Paramati, S. R., Ozturk, I., & Bhattacharya, S. (2016). The effect of renewable energy consumption on economic growth: Evidence from top 38 countries. Applied Energy, 162, 733–741. https://doi.org/10.1016/j.apenergy.2015.10.104
]Search in Google Scholar
[
Carroll, P. (2010). Does regulatory impact assessment lead to better policy? Policy and Society, 29(2), 113–122. https://doi.org/10.1016/j.polsoc.2010.03.009
]Search in Google Scholar
[
Dvořák, P., Martinát, S., der Horst, D. V., Frantál, B., & Turečková, K. (2017). Renewable energy investment and job creation; a cross-sectoral assessment for the Czech Republic with reference to EU benchmarks. Renewable and Sustainable Energy Reviews, 69, 360–368. https://doi.org/10.1016/j.rser.2016.11.158
]Search in Google Scholar
[
European Parliament. (2023). DIRECTIVE (EU) 2023/2413 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 18 October 2023. Official Journal of the European Union. https://eur-lex.europa.eu/eli/dir/2023/2413/oj
]Search in Google Scholar
[
Guillot, V., Siggini, G., & Assoumou, E. (2023). Interactions between land and grid development in the transition to a decarbonized European power system. Energy Policy, 175, 113470. https://doi.org/10.1016/j.enpol.2023.113470
]Search in Google Scholar
[
Hekrle, M., Liberalesso, T., Macháč, J., & Matos Silva, C. (2023). The economic value of green roofs: A case study using different cost–benefit analysis approaches. Journal of Cleaner Production, 413, 137531. https://doi.org/10.1016/j.jclepro.2023.137531
]Search in Google Scholar
[
Holma, A., Leskinen, P., Myllyviita, T., Manninen, K., Sokka, L., Sinkko, T., & Pasanen, K. (2018). Environmental impacts and risks of the national renewable energy targets: A review and a qualitative case study from Finland. Renewable and Sustainable Energy Reviews, 82, 1433–1441. https://doi.org/10.1016/j.rser.2017.05.146
]Search in Google Scholar
[
Chalgynbayeva, A., Mizik, T., & Bai, A. (2022). Cost–Benefit Analysis of Kaposvár Solar Photovoltaic Park Considering Agrivoltaic Systems. Clean Technologies, 4(4), Article 4. https://doi.org/10.3390/cleantechnol4040064
]Search in Google Scholar
[
Irie, N., Kawahara, N., & Esteves, A. M. (2019). Sector-wide social impact scoping of agrivoltaic systems: A case study in Japan. Renewable Energy, 139, 1463–1476. https://doi.org/10.1016/j.renene.2019.02.048
]Search in Google Scholar
[
Jain, P., Raina, G., Sinha, S., Malik, P., & Mathur, S. (2021). Agrovoltaics: Step towards sustainable energy-food combination. Bioresource Technology Reports, 15, 100766. https://doi.org/10.1016/j.biteb.2021.100766
]Search in Google Scholar
[
Jing, R., Liu, J., Zhang, H., Zhong, F., Liu, Y., & Lin, J. (2022). Unlock the hidden potential of urban rooftop agrivoltaics energy-food-nexus. Energy, 256, 124626. https://doi.org/10.1016/j.energy.2022.124626
]Search in Google Scholar
[
Junedi, M. M., Ludin, N. A., Hamid, N. H., Kathleen, P. R., Hasila, J., & Ahmad Affandi, N. A. (2022). Environmental and economic performance assessment of integrated conventional solar photovoltaic and agrophotovoltaic systems. Renewable and Sustainable Energy Reviews, 168, 112799. https://doi.org/10.1016/j.rser.2022.112799
]Search in Google Scholar
[
Kim, T.-H., Chun, K.-S., & Yang, S.-R. (2021). Analyzing the Impact of Agrophotovoltaic Power Plants on the Amenity Value of Agricultural Landscape: The Case of the Republic of Korea. Sustainability, 13(20), Article 20. https://doi.org/10.3390/su132011325
]Search in Google Scholar
[
Lohse, C. (2018). Environmental impact by hydrogeothermal energy generation in low-enthalpy regions. Renewable Energy, 128, 509–519.
]Search in Google Scholar
[
Macháč, J., Dubová, L., Zaňková, L., Matějka, J., Nobilis, L., & Maňhal, J. (2018). Metodika zjišťování vlivu obnovitelných zdrojů energie na hospodářství a životní prostředí mikroregionu / MAS. Ústí nad Labem: Institut pro ekonomickou a ekologickou politiku. http://www.ieep.cz/wp-content/uploads/2018/12/Machac_et_al_2018_Metodika_OZE_mikroregiony.pdf
]Search in Google Scholar
[
Macháč, J., & Zaňková, L. (2020). Renewables—To Build or Not? Czech Approach to Impact Assessment of Renewable Energy Sources with an Emphasis on Municipality Perspective. Land, 9(12), Article 12. https://doi.org/10.3390/land9120497
]Search in Google Scholar
[
Pascaris, A. S., Gerlak, A. K., & Barron-Gafford, G. A. (2023). From niche-innovation to mainstream markets: Drivers and challenges of industry adoption of agrivoltaics in the U.S. Energy Policy, 181, 113694. https://doi.org/10.1016/j.enpol.2023.113694
]Search in Google Scholar
[
Pascaris, A. S., Schelly, C., Burnham, L., & Pearce, J. M. (2021). Integrating solar energy with agriculture: Industry perspectives on the market, community, and socio-political dimensions of agrivoltaics. Energy Research & Social Science, 75, 102023. https://doi.org/10.1016/j.erss.2021.102023
]Search in Google Scholar
[
Rösch, C., & Fakharizadehshirazi, E. (2024). The spatial socio-technical potential of agrivoltaics in Germany. Renewable and Sustainable Energy Reviews, 202, 114706. https://doi.org/10.1016/j.rser.2024.114706
]Search in Google Scholar
[
Tan, Y., Liu, J., Li, W., Yin, J., Chen, H., Peng, Y., Tan, J., & Wei, M. (2025). Agrivoltaics development progresses: From the perspective of photovoltaic impact on crops, soil ecology and climate. Environmental Research, 266, 120540. https://doi.org/10.1016/j.envres.2024.120540
]Search in Google Scholar
[
Torma, G., & Aschemann-Witzel, J. (2023). Social acceptance of dual land use approaches: Stakeholders’ perceptions of the drivers and barriers confronting agrivoltaics diffusion. Journal of Rural Studies, 97, 610–625. https://doi.org/10.1016/j.jrurstud.2023.01.014
]Search in Google Scholar
[
Vejchodská, E. (2015). Cost-benefit analysis: Too often biased. E+M Ekonomie a Management, 2015(18(4)), 68–77. https://doi.org/10.15240/tul/001/2015-4-005
]Search in Google Scholar
[
Vélez, S., Valente, J., Bretzel, T., & Trommsdorff, M. (2024). Assessing the impact of overhead agrivoltaic systems on GNSS signal performance for precision agriculture. Smart Agricultural Technology, 9, 100664. https://doi.org/10.1016/j.atech.2024.100664
]Search in Google Scholar
[
Vidotto, L. C., Schneider, K., Morato, R. W., do Nascimento, L. R., & Rüther, R. (2024). An evaluation of the potential of agrivoltaic systems in Brazil. Applied Energy, 360, 122782. https://doi.org/10.1016/j.apenergy.2024.122782
]Search in Google Scholar
[
Whiteman, M., & José, P. (2004). Local impact assessment of wetlands–from hydrological impact to ecological effects. In Hydrology: Science and Practice for the 21st Century, Proceedings of the British Hydrological Society International Conference July 2004 (s. 198–212). B. Webb, M. Acreman, C. Maksimovic, H. Smithers and C. Kirby.
]Search in Google Scholar