Accesso libero

Design and prototype of a 60 GHz variable gain RF amplifier with 90 nm CMOS for multi-gigabit-rate close proximity point-to-point communications

   | 08 giu 2024
INFORMAZIONI SU QUESTO ARTICOLO

Cita

“IEEE standard for high data rate wireless multi-media networks–amendment 1: High-rate close proximity point-to-point communications,” IEEE Std 802.15.3e-2017 (Amendment to IEEE Std 802.15.3-2016), pp. 1–178, 2017. Search in Google Scholar

D. Cassioli and N. Rendevski, “Modulation and detection strategies for 60 GHz UWB high-data rate wireless indoor communications,” in 2015 12th International Conference on Telecommunication in Modern Satellite, Cable and Broadcasting Services (TELSIKS), pp. 251–258, 2015. doi: 10.1109/TELSKS.2015.7357781 Search in Google Scholar

B. Razavi, “A 60-GHz CMOS receiver front-end,” IEEE Journal of Solid-State Circuits, vol. 41, no. 1, pp. 17–22, 2006. doi: 10.1109/JSSC.2005.858626 Search in Google Scholar

M. Fujishima, “Low-power 60 GHz CMOS pulse communication,” in 2008 9th International Conference on Solid-State and Integrated-Circuit Technology, pp. 1348–1351, 2008. doi: 10.1109/ICSICT.2008.4734810 Search in Google Scholar

R. Wu, R. Minami, Y. Tsukui, S. Kawai, Y. Seo, S. Sato, K. Kimura, S. Kondo, T. Ueno, N. Fajri, S. Maki, N. Nagashima, Y. Takeuchi, T. Yamaguchi, A. Musa, K. K. Tokgoz, T. Siriburanon, B. Liu, Y. Wang, J. Pang, N. Li, M. Miyahara, K. Okada, and A. Matsuzawa, “64-QAM 60-GHz CMOS transceivers for IEEE 802.11ad/ay,” IEEE Journal of Solid-State Circuits, vol. 52, no. 11, pp. 2871–2891, 2017. doi: 10.1109/JSSC.2017.2740264 Search in Google Scholar

H. Gao, M. Matters-Kammerer, D. Milosevic, and P. G. M. Baltus, mm-Wave Low-Power Receiver, pp. 79–100. Cham: Springer International Publishing, 2018. doi: 10.1007/978-3-319-72980-07 Search in Google Scholar

R. Ciocoveanu, R. Weigel, and V. Issakov, “A highly-integrated 60 GHz receiver for radar applications in 28nm bulk CMOS,” in 2019 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS), pp. 1–5, 2019. doi: 10.1109/COMCAS44984.2019.8958434 Search in Google Scholar

A. Oncu, “A 1.2 V and 69 mW 60 GHz multi-channel tunable CMOS receiver design,” Radioengineering, vol. 24, no. 1, p. 143, 2015. doi: 10.13164/re.2015.0142 Search in Google Scholar

B. Sadhu, A. Valdes-Garcia, J O. Plouchart, H. Ainspan, A. K. Gupta, M. Ferriss, M. Yeck, M. Sanduleanu, X. Gu, C. W. Baks, D. Liu, and D. Friedman, “A 250-mW 60-GHz CMOS transceiver SoC integrated with a four-element aip providing broad angular link coverage,” IEEE Journal of Solid-State Circuits, vol. 55, no. 6, pp. 1516–1529, 2020. doi: 10.1109/JSSC.2019.2943918 Search in Google Scholar

H. Turkmen, M. S. S. Saolaija, and H. Arslan, “Wireless sensing - enabler of future wireless technologies,” Turkish Journal of Electrical Engineering and Computer Sciences, vol. 29, no. 1, pp. 1–17, 2021. doi.org/10.3906/elk-2101-10 Search in Google Scholar

A. Oncu, K. Takano, and M. Fujishima, “8GBPS CMOS ASK modulator for 60GHz wireless communication,” in 2008 IEEE Asian Solid-State Circuits Conference, pp. 125–128, 2008. doi: 10.1109/ASSCC.2008.4708745 Search in Google Scholar

S. Jang and C. Nguyen, “A 60 GHz 2.5 GBPS OOK modulator with data-dependent impedance cell for enhanced on/off isolation in 0.18 μm BICMOS process,” IEEE Microwave and Wireless Components Letters, vol. 25, no. 4, pp. 244–246, 2015. doi: 10.1109/LMWC.2015.2400911 Search in Google Scholar

A. Oncu and M. Fujishima, “49 mW 5 Gbit/s CMOS receiver for 60 GHz impulse radio,” Electronics letters, vol. 45, no. 17, pp. 889–890, 2009. doi: 10.1049/el.2009.0041 Search in Google Scholar

X. Yu, H. Rashtian, S. Mirabbasi, P. P. Pande, and D. Heo, “An 18.7-Gb/s 60-GHz OOK demodulator in 65-nm CMOS for wireless network-on-chip,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 3, pp. 799–806, 2015. doi: 10.1109/TCSI.2014.2386751 Search in Google Scholar

C. W. Byeon, C. H. Yoon, and C. S. Park, “A 67-mW 10.7-Gb/s 60-GHz OOK CMOS transceiver for short-range wireless communications,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 9, pp. 3391–3401, 2013. doi: 10.1109/TMTT.2013.2274962 Search in Google Scholar

I. C. H. Lai and M. Fujishima, Design and modeling of millimeter-wave CMOS circuits for wireless transceivers: era of sub-100nm technology. Springer, 2008. Search in Google Scholar

C. Doan, S. Emami, A. Niknejad, and R. Brodersen, “Millimeter-wave CMOS design,” IEEE Journal of Solid-State Circuits, vol. 40, no. 1, pp. 144–155, 2005. doi: 10.1109/JSSC.2004.837251 Search in Google Scholar

T. Cheung, J. Long, K. Vaed, R. Volant, A. Chinthakindi, C. Schnabel, J. Florkey, and K. Stein, “On-chip interconnect for mm-wave applications using an all-copper technology and wavelength reduction,” in 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC., pp. 396–501 vol.1, 2003. doi: 10.1109/ISSCC.2003.1234353 Search in Google Scholar

I. C. H. Lai, Y. Kambayashi, and M. Fujishima, “60-GHz CMOS down-conversion mixer with slow-wave matching transmission lines,” in 2006 IEEE Asian Solid-State Circuits Conference, pp. 195–198, 2006. doi: 10.1109/ASSCC.2006.357884 Search in Google Scholar

A. Oncu, B. B. M. W. Badalawa, and M. Fujishima, “60 GHz-pulse detector based on CMOS nonlinear amplifier,” in 2009 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, pp. 1–4, 2009. doi: 10.1109/SMIC.2009.4770488 Search in Google Scholar

T. B. Kumar, K. Ma, and K. S. Yeo, “A 4 GHz 60 dB variable gain amplifier with tunable DC offset cancellation in 65 nm CMOS,” IEEE Microwave and Wireless Components Letters, vol. 25, no. 1, pp. 37–39, 2015. doi: 10.1109/LMWC.2014.2361676 Search in Google Scholar

M. Parlak, M. Matsuo, and J. Buckwalter, “A 6-bit wideband variable gain amplifier with low group delay variation in 90nm CMOS,” in 2012 IEEE 12th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, pp. 147–150, 2012. doi: 10.1109/SiRF.2012.6160121 Search in Google Scholar

Y. Wang, C. Hull, G. Murata, and S. Ravid, “A linear-in-dB analog baseband circuit for low power 60 GHz receiver in standard 65nm CMOS,” in 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 225–228, 2013. doi: 10.1109/RFIC.2013.6569567 Search in Google Scholar

C. W. Byeon and C. S. Park, “A 60-GHz variable gain amplifier with low phase and op1dB variation,” Microwave and Optical Technology Letters, vol. 62, no. 2, pp. 696–700, 2020. doi: doi.org/10.1002/mop.32123 Search in Google Scholar

W.-T. Li, Y.-C. Chiang, J.-H. Tsai, H.-Y. Yang, J.-H. Cheng, and T.-W. Huang, “60-GHz 5-bit phase shifter with integrated VGA phase-error compensation,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 3, pp. 1224–1235, 2013. doi: 10.1109/TMTT.2013.2244226 Search in Google Scholar

J. G. Lee, T. H. Jang, G. H. Park, H. S. Lee, C. W. Byeon, and C. S. Park, “A 60-GHz four-element beam-tapering phased-array transmitter with a phase-compensated VGA in 65-nm CMOS,” IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 7, pp. 2998–3009, 2019. doi: 10.1109/TMTT.2019.2907242 Search in Google Scholar

D. Huang, L. Zhang, L. Zhang, and Y. Wang, “A 60-GHz, 15-dB gain range digitally controlled phase-inverting VGA with 0-dBm OP1 dB and 3° phase variation in 65-nm CMOS,” IEEE Microwave and Wireless Components Letters, vol. 28, no. 9, pp. 819–821, 2018. doi: 10.1109/LMWC.2018.2854964 Search in Google Scholar

eISSN:
1339-309X
Lingua:
Inglese
Frequenza di pubblicazione:
6 volte all'anno
Argomenti della rivista:
Engineering, Introductions and Overviews, other