INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] D. R. Bull and F. Zhang, Intelligent image and video compression: communicating pictures, Second Edition, Academic Press, 2021.10.1016/B978-0-12-820353-8.00022-0 Search in Google Scholar

[2] R. Gade and T. B. Moeslund, “Thermal cameras and applications: a survey”, Machine Vision and Applications, vol. 25, no. 1, pp. 245–262, doi: 10.1007/s00138–013–0570–5, 2014.10.1007/s00138-013-0570-5 Search in Google Scholar

[3] D. Peric, B. Livada, M. Peric, and S. Vujic, “Thermalimager range: predictions, expectations, and reality”, Sensors, vol. 19, no. 15, pp. 3313-1-23, doi: 10.3390/s19153313, 2019.10.3390/s19153313669621531357690 Search in Google Scholar

[4] M. Diakides, J. D. Bronzino, and D. R. Peterson, Medical infrared imaging: principles and practices, First Edition, CRC Press, 2012.10.1201/b12938 Search in Google Scholar

[5] R. Usamentiaga, P. Venegas, J. Guerediaga, L. Vega, J. Molleda, and F. G. Bulnes, “Infrared thermography for temperature measurement and non–destructive testing”, Sensors, vol. 14, no. 7, pp. 12305–12348, doi: 10.3390/s140712305, 2014.10.3390/s140712305416842225014096 Search in Google Scholar

[6] M. J. Haque and M. Muntjir, “Night vision technology: an overview”, International Journal of Computer Applications,vol. 167, no. 13, pp. 8887–37–42, doi: 10.5120/ijca914562, 2017. Search in Google Scholar

[7] G. Chen and W. Wang, “Target recognition in infrared circumferential scanning system via deep convolutional neural networks”, Sensors, vol. 20, no. 7, pp. 1922–1–18, doi: 10.3390/s20 071922, 2020. Search in Google Scholar

[8] B. P. Bondžulić, B. Z. Pavlović, and V. S. Petrović, “Performance analysis of full–reference objective image and video quality assessment metrics”, Vojnotehnicki glasnik / Military Technical Courier, vol. 66, no. 2, pp. 322–350, doi: 10.5937/vojtehg66-12708, 2018.10.5937/vojtehg66-12708 Search in Google Scholar

[9] Methodologies for the subjective assessment of the quality of television images, Recommendation ITU–R, BT, 500–14 10/2019, International Telecommunication Union, Geneva, Switzerland, 2020. Search in Google Scholar

[10] T. R. Goodall, A. C. Bovik, and N. G. Paulter, “Tasking on natural statistics of infrared images”, IEEE Transactions on Image Processing, vol. 25, no. 1 pp. 65–79, doi: 10.1109/TIP.2496289, 2015. Search in Google Scholar

[11] K. Hossain, C. Mantel, and S. O. Forchhammer, “No-reference prediction of quality metrics for H. 264-compressed infrared sequences for unmanned aerial vehicle applications”, Journal of Electronic Imaging, vol. 28, no. 4, pp. 043012–1–14, doi: 10.1117/1.JEI.28.4.043012, 2019.10.1117/1.JEI.28.4.043012 Search in Google Scholar

[12] M. Teutsch, S. Sedelmaier, S. Moosbauer, G. Eilertsen, and T. Walter, “An evaluation of objective image quality assessment for thermal infrared video tone mapping”, IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, June 14–19, pp. 108–109, doi: 10.1109/CVPRW50498.00062, 2020. Search in Google Scholar

[13] E. Belyaev, C. Mantel, and S. Forchhammer, “High bit depth infrared image compression via low bit depth codecs”, SPIE 10403, 15th Infrared Remote Sensing and Instrumentation, San Diego, California, USA, August 7–8, pp. 104030A–1–8, doi: 10.1117/12.2275542, 2017.10.1117/12.2275542 Search in Google Scholar

[14] D. Salomon and G. Motta, Handbook of data compression, Fifth Edition, Springer, 2010.10.1007/978-1-84882-903-9 Search in Google Scholar

[15] A. J. Hussain, A. Al-Fayadh, and N. Radi “Image compression techniques: a survey in lossless and lossy algorithms”, Neuro-computing, vol. 300, pp. 44–69, doi: 10.1016/j.neucom.02.094, 2018. Search in Google Scholar

[16] M. S. Al-Ani and F. H. Awad “The JPEG image compression algorithm”, International Journal of Advances in Engineering & Technology, vol. 6, no. 3, pp. 1055–1062, 2013. Search in Google Scholar

[17] R. C. Gonzalez and R. E. Woods, Digital image processing, Third Edition, Pearson, Ch 10, pp. 743–747, 2008. Search in Google Scholar

[18] C. M. Brislawn and M. D. Quirk, Image compression: JPEG-20 00 standard, Encyclopedia of Optical and Photonic Engineering, Second Edition, CRC Press, Ch 83, 2015. Search in Google Scholar

[19] F. Ebrahimi, M. Chamik, and S. Winkler, “JPEG vs. JPEG 2000: an objective comparison of image encoding quality”, Optical Science and Technology, the SPIE 49th Annual Meeting, Denver, Colorado, USA, August 2–6, pp. 300–308, doi: 10.1117/12.564835, 2004.10.1117/12.564835 Search in Google Scholar

[20] R. Maini and S. Mehra “A review on JPEG2000 image compression”, International Journal of Computer Applications, vol. 11, no. 9, pp. 43–47, doi: 10.5120/1607-2159, 2000.10.5120/1607-2159 Search in Google Scholar

[21] Y. Q. Shi and H. Sun, Image and video compression for multimedia engineering: fundamentals, algorithms, and standards, Third Edition, CRC Press, 2019.10.1201/9781315097954 Search in Google Scholar

[22] Z. Wang and A. C. Bovik, “Mean squared error: love it or leave it? A new look at signal fidelity measures”, IEEE Signal Processing Magazine, vol. 26, no. 1, pp. 98–117, doi: 10.1109/MSP.2008.930649, 2009.10.1109/MSP.2008.930649 Search in Google Scholar

[23] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity”, IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, doi: 10.1109/TIP.2003.819861, 2004.10.1109/TIP.2003.819861 Search in Google Scholar

[24] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural similarity for image quality assessment”, The 37th Asilomar Conference on Signals, Systems & Computers, Pacific Grove, CA, USA, November 9-12, pp. 1398–1402, 2003. Search in Google Scholar

[25] Z. Wang and Q. Li, “Information content weighting for perceptual image quality assessment”, IEEE Transactions on Image Processing, vol. 20, no. 5, pp. 1185–1198, doi: 10.1109/TIP.2092 435, 2010. Search in Google Scholar

[26] L. Zhang and H. Li, “SR SIM: a fast and high performance IQA index based on spectral residual”, 19th IEEE International Conference on Image Processing, Orlando, FL, USA, September 30-October 3, pp. 1473–1476, doi: 10.1109/ICIP.6467149, 2012. Search in Google Scholar

[27] X. Hou and L. Zhang, “Saliency detection: a spectral residual approach”, IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, June 17-22, pp. 1–8, doi: 10.1109/CVPR.383267, 2007. Search in Google Scholar

[28] H. Jia, L. Zhang, and T. Wang, “Contrast and visual saliency similarity–induced index for assessing image quality”, IEEE Access, vol. 6, pp. 65885–65893, doi: 10.1109/ACCESS.2878739, 2018. Search in Google Scholar

[29] S. Li, F. Zhang, L. Ma, and K. N. Ngan, “Image quality assessment by separately evaluating detail losses and additive impairments”, IEEE Transactions on Multimedia, vol. 13, no. 5, pp. 935–949, doi: 10.1109/TMM.2152382, 2011. Search in Google Scholar

[30] A. Liu, W. Lin, and M. Narwaria, “Image quality assessment based on gradient similarity”, IEEE Transactions on Image Processing, vol. 21, no. 4, pp. 1500–1512, doi: 10.1109/TIP.2175935, 2011. Search in Google Scholar

[31] W. Xue, L. Zhang, X. Mou, and A. C. Bovik, “Gradient magnitude similarity deviation: a highly efficient perceptual image quality index”, IEEE Transactions on Image Processing, vol. 23, no. 2, pp. 684–695, doi: 10.1109/TIP.2293423, 2013. Search in Google Scholar

[32] T. Wang, L. Zhang, H. Jia, B. Li, and H. Shu, “Multiscale contrast similarity deviation: an effective and efficient index for perceptual image quality assessment”, Signal Processing: Image Communication, vol. 45, pp. 1–9, doi: 10.1016/j.image.04.005, 2016. Search in Google Scholar

[33] L. Zhang, L. Zhang, X. Mou, and D. Zhang, “FSIM: a feature similarity index for image quality assessment”, IEEE Transactions on Image Processing, vol. 20, no. 8, pp. 2378–2386, doi: 10.1109/TIP.2109730, 2011. Search in Google Scholar

[34] R. Reisenhofer, S. Bosse, G. Kutyniok, and T. Wiegand, “A Haar wavelet–based perceptual similarity index for image quality assessment”, Signal Processing: Image Communication, vol. 61, pp. 33–43, doi: 10.1016/j.image.2017.11.001, 2018.10.1016/j.image.2017.11.001 Search in Google Scholar

[35] L. Zhang, L. Zhang, and X. Mou, “RFSIM: a feature based image quality assessment metric using Riesz transforms”, 17th IEEE International Conference on Image Processing, Hong Kong, Hong Kong, September 12-15, pp. 321–324, doi:10.1109/ICIP. 5649275, 2010. Search in Google Scholar

[36] G. Yang, D. Li, F. Lu, Y. Liao, and W. Yang, “RVSIM: a feature similarity method for full-reference image quality assessment”, EURASIP Journal on Image and Video Processing, vol. 2018, no. 1, pp. 1–15, doi: 10.1186/s13640–018–0246–1, 2018.10.1186/s13640-018-0246-1 Search in Google Scholar

[37] M. Layek, A. F. M. Uddin, T. P. Le, T. Chung, and E. N. Huh, “Center-emphasized visual saliency and a contrast-based full reference image quality index”, Symmetry, vol. 11, no. 3, pp. 296–1–14, doi: 10.3390/sym11030296, 2019.10.3390/sym11030296 Search in Google Scholar

[38] E. C. Larson and D. M. Chandler, “Most apparent distortion: full-reference image quality assessment and the role of strategy”, Journal of Electronic Imaging, vol. 19, no. 1, pp. 011006–1–21, doi: 10.1117/1.3267105, 2010.10.1117/1.3267105 Search in Google Scholar

[39] X. Yu, C. G. Bampis, P. Gupta, and A. C. Bovik, “Predicting the quality of images compressed after distortion in two steps”, IEEE Transactions on Image Processing, vol. 28, no. 12, pp. 5757–5770, doi: 10.1109/TIP.2922850, 2019. Search in Google Scholar

[40] H. R. Sheikh and A. C. Bovik, “Image information and visual quality”, IEEE Transactions on Image Processing, vol. 15, no. 2, pp. 430–444, doi: 10.1109/TIP.2005.859378, 2006.10.1109/TIP.2005.859378 Search in Google Scholar

[41] J. Wu, W. Lin, G. Shi, and A. Liu, “Perceptual quality metric with internal generative mechanism”, IEEE Transactions on Image Processing, vol. 22, no. 1, pp. 43–54, doi: 10.1109/TIP.2214048, 2012. Search in Google Scholar

[42] H. W. Chang, H. Yang, Y. Gan, and M. H. Wang, “Sparse feature fidelity for perceptual image quality assessment”, IEEE Transactions on Image Processing, vol. 22, no. 10, pp. 4007–4018, doi: 10.1109/TIP.2266579, 2013. Search in Google Scholar

[43] K. Ding, K. Ma, S. Wang, and E. P. Simoncelli, “Image quality assessment: unifying structure and texture similarity”, IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 44, no. 5, pp. 2567-2581, doi: 10.1109/TPAMI.2020.3045810, 2022.10.1109/TPAMI.2020.304581033338012 Search in Google Scholar

[44] A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a “completely blind” image quality analyzer”, IEEE Signal Processing Letters, vol. 20, no. 3, pp. 209–212, doi: 10.1109/LSP.2227726, 2012. Search in Google Scholar

[45] S. Merrouche, D. Bujakovic, M. Andric, and B. Bondulic, “Classification of infrared image distortions using contrast–based features”, International Symposium on Signals, Circuits and Systems (ISSCS), Iasi, Romania, July 11-12, pp. 1–4, doi: 10.1109/ISSCS.8801761, 2019. Search in Google Scholar

[46] N. J. Morris, S. Avidan, W. Matusik, and H. Pfister, “Statistics of infrared images”, IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, June 17-22, pp. 1–7, doi: 10.1109/CVPR.383003, 2007. Search in Google Scholar

[47] A. Toet, M. A. Hogervorst, and A. R. Pinkus, “The TRICLOBS dynamic multi-band image data set for the development and evaluation of image fusion methods”, PloS one, vol. 11, no. 12, e0165016, doi: 10.1371/journal.pone.0165016, 2016.10.1371/journal.pone.0165016520127628036328 Search in Google Scholar

[48] B. Bondžulić and V. Petrović, “Multisensor background extraction and updating for moving target detection”, 11th International Conference on Information Fusion, Cologne, Germany, 30 June-3 July, pp. 1–8, doi: 10.1109/ICIF.4632435, 2008. Search in Google Scholar

[49] D. L. Ruderman, “The statistics of natural images”, Network: Computation in Neural Systems, vol. 5, no. 4, pp. 517–548, 1994.10.1088/0954-898X_5_4_006 Search in Google Scholar

[50] D. E. Moreno-Villamarín, H. D. Bentez–Restrepo, and A. C. Bovik, “Predicting the quality of fused long wave infrared and visible light images”, IEEE Transactions on Image Processing, vol. 26, no. 7, pp. 3479–3491, doi: 10.1109/TIP.2695898, 2017. Search in Google Scholar

eISSN:
1339-309X
Lingua:
Inglese
Frequenza di pubblicazione:
6 volte all'anno
Argomenti della rivista:
Engineering, Introductions and Overviews, other