Accesso libero

Application of A Line Ampacity Model and Its Use in Transmission Lines Operations

INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] CIGRE Joint Working Group B2.C1: Increasing Capacity of Overhead Transmission Lines: Needs and Solutions, CIGRE, 2010.Search in Google Scholar

[2] FERNANDEZ, E.—ALBIZU, I.—BEDIALAUNETA, M. T.— MAZON, A. J.—LEITE, P. T.: Dynamic Line Rating Systems for Wind Power Integration, Power Engineering Society Conference and Exposition in Africa (PowerAfrica), IEEE, 2012, pp. 1–7.10.1109/PowerAfrica.2012.6498618Search in Google Scholar

[3] KLEIN, K. M.—SPRINGER, P. L.—BLACK, W. Z.: RealTime Ampacity and Ground Clearance Software for Integration into Smart Grid Technology, Power and Energy Society General Meeting, IEEE, 2011, pp. 1–11.10.1109/PES.2011.6038884Search in Google Scholar

[4] SCHMALE, M.—PUFFER, R.—HEIDEMANN, M.: Dynamic Ampacity Rating of Conductor Bars in Highly Loaded Substations, CIRED 2013: 22nd International Conference and Exhibition on Electricity Distribution, 2013, pp. 1–4.10.1049/cp.2013.0951Search in Google Scholar

[5] FU, J.—ABDELKADER, S.—MORROW, D. J.—FOX, B.: Partial Least Squares Modelling for Dynamic Overhead Line Ratings, PowerTech, 2011 IEEE Trondheim, 2011, pp. 1–6.Search in Google Scholar

[6] FU, J.—MORROW, D. J.—ABDELKADER, S. M.: Modelling and Prediction Techniques for Dynamic Overhead Line Rating, Power and Energy Society General Meeting, 2012 IEEE, 2012, pp. 1–7.10.1109/PESGM.2012.6344733Search in Google Scholar

[7] ARNOLD, P.—KMENT, A.—PIPA, M.—JAnICEK, F.: On-site Partial Discharges Measurement of XLPE Cables, Transactions On Electrical Engineering 123, (2012), 107.Search in Google Scholar

[8] STEPHEN, R.—DOUGLAS, D.—MIROSEVIC, G.—ARGA-SINSKA, H.—BAKIC, K.—HOFFMAN, S.—IGLESIAS, J.— JAKL, F.—KATOH, J.—KIKUTA, T. and others: Thermal Behaviour of Overhead Conductors, Cigre, 2002.Search in Google Scholar

[9] IEEE Standard for Calculating the Current-Temperature of Bare Overhead Conductors, IEEE Std 738-2006 (Revision of IEEE Std 738-1993), IEEE Power Engineering Society, 2007, pp. c1–59.Search in Google Scholar

[10] TLUSTY, J.: Monitorovaní, rízení a chránení elektrizacních soustav, Ceske vysoke ucení technické v Praze, 2011.Search in Google Scholar

[11] PYTLAK, P.—MUSILEK, P.—LOZOWSKI, E.,: Precipitation-Based Conductor Cooling Model for Dynamic Thermal Rating Systems, Electrical Power Energy Conference (EPEC), 2009 IEEE, 2009, pp. 1–7.10.1109/EPEC.2009.5420710Search in Google Scholar

[12] CIGRE Working Group B2.12 and International Council on Large Electric Systems: Guide for Selection of Weather Parameters for Bare Overhead Conductor Ratings, CIGRE, 2006.Search in Google Scholar

[13] LE, T. L.—NEGNEVITSKY, M.—PIEKUTOWSKI, M.: Expert System Application for the Loading Capability Assessment of Transmission Lines, Power Systems, IEEE Transactions on 10 No. 4 (1995), 1805–1812.Search in Google Scholar

[14] ROGLER, R. D.: Infrarotdiagnose an Verbindungen der energetischen Elektrotechnik, Fortschrittberichte VDI, ser. 21, VDI Verlag, 1999.Search in Google Scholar

[15] VOSTRACKY, Z.—HALLER, R.: Impact of Radiation on the Thermal Behaviour of an Overhead Line Rope, 12th Interna-tional Scientific Conference Electric Power Engineering, VSB — Technical University of Ostrava, 2011, pp. 615–618.Search in Google Scholar

[16] SNAJDR, J.—VOSTRACKY, Z.—SEDLACEK, J.: Evaluation of Theoretical Results of Overhead Line Ampacity Model, Proceedings of the 7th International Scientific Symposium on Electrical Power Engineering, Technical University of Kosice, 2013, pp. 152–154.Search in Google Scholar

[17] GOGA, V.—PAULECH, J.—VARY, M.: Cooling of Electrical Cu Conductor with PVC Insulation - Analytical, Numerical and Fluid Flow Solution, J. Electrical Engineering 64 No. 2 (2013), 92–99.10.2478/jee-2013-0013Search in Google Scholar

[18] VARY, M.—GOGA, V.—PAULECH, J.: Experimental, Analytical and Computational Approaches to Bare Electric Wire Loading Characteristics, Electrotechnica, Electronica, Automatica 60 No. 3 (2012), 14–21.Search in Google Scholar

[19] VDI: VDI Heat Atlas, Springer, 2010.Search in Google Scholar

[20] Nktcables: VALCAP Grid Monitoring and Rating for High Voltage Cables and Overhead Lines, www.nktcables.com.Search in Google Scholar

[21] RIBE: RITHERM — Temperature Monitoring and Load Optimization on Overhead Transmission Lines, 2014.01.06, www.ribe.de.Search in Google Scholar

[22] CNI,: Overhead Electrical Lines Exceeding AC 45 kV, Part 3: Set of National Normative Aspects, Section 19: National Normative Aspects for the Czech Republic, CSN EN 50341 3 19, Cesky normalizacní institut, 2003.11.25.Search in Google Scholar

[23] MUSAVI, M.—CHAMBERLAIN, D.—LI, Q.: Overhead Conductor Dynamic Thermal Rating Measurement and Prediction, Smart Measurements for Future Grids (SMFG), 2011 IEEE International Conference on, 2011, pp. 135–138.10.1109/SMFG.2011.6125755Search in Google Scholar

[24] KIM, S. D.—MORCOS, M. M.: An Application of Dynamic Thermal Line Rating Control System to Up-Rate the Ampacity of Overhead Transmission Lines, Power Delivery, IEEE Transactions on 28 No. 2 (2013), 1231–1232.Search in Google Scholar

[25] ZHANG, J.—PU, J.—McCALLEY, J. D.—STERN, H.—GAL-LUS, W. A., Jr.: A Bayesian Approach for Short-Term Transmission Line Thermal Overload Risk Assessment, Power Delivery, IEEE Transactions on 17 No. 3 (2002), 770–778.Search in Google Scholar

[26] WANG, K.—SHENG, G.—JIANG, X.: Risk Assessment of Transmission Dynamic Line Rating based on Monte Carlo, IEEE Power Engineering and Automation Conference (PEAM), vol. 2, 2011, pp. 398–402.Search in Google Scholar

eISSN:
1339-309X
Lingua:
Inglese
Frequenza di pubblicazione:
6 volte all'anno
Argomenti della rivista:
Engineering, Introductions and Overviews, other