Accesso libero

Kidney Function and the Use of Vitamin K Antagonists or Direct Oral Anticoagulants in Atrial Fibrillation

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Lippi G, Sanchis-Gomar F, Cervellin G. Global epidemiology of atrial fibrillation: An increasing epidemic and public health challenge [published correction appears in Int J Stroke. 2020 Jan 28;:1747493020905964]. Int J Stroke. 2021;16:217–221. doi: 10.1177/1747493019897870. Search in Google Scholar

Hindricks G, Potpara T, Dagres N, et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC [published correction appears in Eur Heart J. 2021 Feb 1;42:507] [published correction appears in Eur Heart J. 2021 Feb 1;42:546–547] [published correction appears in Eur Heart J. 2021 Oct 21;42:4194]. Eur Heart J. 2021;42:373–498. doi: 10.1093/eurheartj/ehaa612. Search in Google Scholar

Arboix A, Alió J. Cardioembolic stroke: clinical features, specific cardiac disorders and prognosis. Curr Cardiol Rev. 2010 Aug;6:150–161. doi: 10.2174/157340310791658730. Search in Google Scholar

GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;385:117–171. doi: 10.1016/S0140-6736(14)61682-2. Search in Google Scholar

Kiuchi MG. Atrial fibrillation and chronic kidney disease: A bad combination. Kidney Res Clin Pract. 2018;37:103–105. doi: 10.23876/j.krcp.2018.37.2.103. Search in Google Scholar

Violi F, Pastori D, Pignatelli P. Mechanisms And Management Of Thrombo-Embolism In Atrial Fibrillation. J Atr Fibrillation. 2014;7:1112. doi: 10.4022/jafib.1112. Search in Google Scholar

Liu S, Li S, Shen G, et al. Structural basis of antagonizing the vitamin K catalytic cycle for anticoagulation. Science. 2021;371:eabc5667. doi: 10.1126/science.abc5667. Search in Google Scholar

Zirlik A, Bode C. Vitamin K antagonists: relative strengths and weaknesses vs. direct oral anticoagulants for stroke prevention in patients with atrial fibrillation. J Thromb Thrombolysis. 2017;43:365–379. doi: 10.1007/s11239-016-1446-0. Search in Google Scholar

Hart RG, Pearce LA, Aguilar MI. Meta-analysis: antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Ann Intern Med. 2007;146:857–867. doi: 10.7326/0003-4819-146-12-200706190-00007. Search in Google Scholar

Demirkan K, Stephens MA, Newman KP, et al. Response to warfarin and other oral anticoagulants: effects of disease states. South Med J. 2000;93:448–455. Search in Google Scholar

Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation [published correction appears in N Engl J Med. 2010;363:1877]. N Engl J Med. 2009;361:1139–1151. doi: 10.1056/NEJMoa0905561. Search in Google Scholar

Granger CB, Alexander JH, McMurray JJ, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365:981–992. doi: 10.1056/NEJMoa1107039. Search in Google Scholar

Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011;365:883–891. doi: 10.1056/NEJMoa1009638. Search in Google Scholar

Giugliano RP, Ruff CT, Braunwald E, et al. Edoxaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2013;369:2093–2104. doi: 10.1056/NEJMoa1310907. Search in Google Scholar

https://www.kidney.org/atoz/content/about-chronic-kidney-disease#what-are-main-causes-chronic-kidney-disease Search in Google Scholar

Nelson SE, Shroff GR, Li S, et al. Impact of chronic kidney disease on risk of incident atrial fibrillation and subsequent survival in medicare patients. J Am Heart Assoc. 2012;1:e002097. doi: 10.1161/JAHA.112.002097. Search in Google Scholar

Alonso A, Lopez FL, Matsushita K, et al. Chronic kidney disease is associated with the incidence of atrial fibrillation: the Atherosclerosis Risk in Communities (ARIC) study. Circulation. 2011;123:2946–2953. doi: 10.1161/CIRCULATIONAHA.111.020982. Search in Google Scholar

Goel N, Jain D, Haddad DB, et al. Anticoagulation in Patients with End-Stage Renal Disease and Atrial Fibrillation: Confusion, Concerns and Consequences. J Stroke. 2020;22:306–316. doi: 10.5853/jos.2020.01886. Search in Google Scholar

Roberts PR, Green D. Arrhythmias in chronic kidney disease. Heart. 2011;97:766–773. doi: 10.1136/hrt.2010.208587. Search in Google Scholar

Gadde S, Kalluru R, Cherukuri SP, et al. Atrial Fibrillation in Chronic Kidney Disease: An Overview. Cureus. 2022;14:e27753. doi: 10.7759/cureus.27753. Search in Google Scholar

Nayak-Rao S, Shenoy MP. Stroke in Patients with Chronic Kidney Disease…: How do we Approach and Manage it? Indian J Nephrol. 2017;27:167–171. doi: 10.4103/0971-4065.202405. Search in Google Scholar

Arnson Y, Hoshen M, Berliner-Sendrey A, et al. Risk of Stroke, Bleeding, and Death in Patients with Nonvalvular Atrial Fibrillation and Chronic Kidney Disease. Cardiology. 2020;145:178–186. doi: 10.1159/000504877. Search in Google Scholar

Ghoshal S, Freedman BI. Mechanisms of Stroke in Patients with Chronic Kidney Disease. Am J Nephrol. 2019;50:229–239. doi: 10.1159/000502446. Search in Google Scholar

Roberts DM, Sevastos J, Carland JE, et al. Clinical Pharmacokinetics in Kidney Disease: Application to Rational Design of Dosing Regimens. Clin J Am Soc Nephrol. 2018;13:1254–1263. doi: 10.2215/CJN.05150418. Search in Google Scholar

Donaldson CJ, Harrington DJ. Therapeutic warfarin use and the extrahepatic functions of vitamin K-dependent proteins. Br J Biomed Sci. 2017;74:163–169. doi: 10.1080/09674845.2017.1336854. Search in Google Scholar

Schurgers LJ, Aebert H, Vermeer C, et al. Oral anticoagulant treatment: friend or foe in cardiovascular disease? Blood. 2004;104:3231–3232. doi: 10.1182/blood-2004-04-1277. Search in Google Scholar

Kosciuszek ND, Kalta D, Singh M, et al. Vitamin K antagonists and cardiovascular calcification: A systematic review and meta-analysis. Front Cardiovasc Med. 2022;9:938567. doi: 10.3389/fcvm.2022.938567. Search in Google Scholar

Alappan HR, Kaur G, Manzoor S, et al. Warfarin Accelerates Medial Arterial Calcification in Humans. Arterioscler Thromb Vasc Biol. 2020;40:1413–1419. doi: 10.1161/ATVBAHA.119.313879. Search in Google Scholar

Rogers M, Goettsch C, Aikawa E. Medial and intimal calcification in chronic kidney disease: stressing the contributions. J Am Heart Assoc. 2013;2:e000481. doi: 10.1161/JAHA.113.000481. Search in Google Scholar

Levy DS, Grewal R, Le TH. Vitamin K deficiency: an emerging player in the pathogenesis of vascular calcification and an iatrogenic consequence of therapies in advanced renal disease. Am J Physiol Renal Physiol. 2020;319:F618–F623. doi: 10.1152/ajprenal.00278.2020. Search in Google Scholar

Brodsky SV, Nadasdy T, Rovin BH, et al. Warfarin-related nephropathy occurs in patients with and without chronic kidney disease and is associated with an increased mortality rate. Kidney Int. 2011;80:181–189. doi: 10.1038/ki.2011.44. Search in Google Scholar

Gui YY, Zou S, Yang WL, et al. The impact of renal function on efficacy and safety of new oral anticoagulant in atrial fibrillation patients: A systemic review and meta-analysis. Medicine (Baltimore). 2019;98:e18205. doi: 10.1097/MD.0000000000018205. Search in Google Scholar

Hori M, Matsumoto M, Tanahashi N, et al. Rivaroxaban vs. warfarin in Japanese patients with atrial fibrillation – the J-ROCKET AF study. Circ J. 2012;76:2104–2111. doi: 10.1253/circj.cj-12-0454. Search in Google Scholar

Andò G, Capranzano P. Non-vitamin K antagonist oral anticoagulants in atrial fibrillation patients with chronic kidney disease: A systematic review and network meta-analysis. Int J Cardiol. 2017;231:162–169. doi: 10.1016/j. ijcard.2016.11.303. Search in Google Scholar

Lee WC, Liao TW, Fang HY, et al. Impact of baseline renal function on the efficacy and safety of different Anticoagulants in Atrial Fibrillation Patients – A cohort study. Thromb J. 2022;20:64. doi: 10.1186/s12959-022-00423-w. Search in Google Scholar

De Vriese AS, Caluwé R, Van Der Meersch H, et al. Safety and Efficacy of Vitamin K Antagonists versus Rivaroxaban in Hemodialysis Patients with Atrial Fibrillation: A Multicenter Randomized Controlled Trial. J Am Soc Nephrol. 2021;32:1474–1483. doi: 10.1681/ASN.2020111566. Search in Google Scholar

Pokorney SD, Chertow GM, Al-Khalidi HR, et al. Apixaban for Patients With Atrial Fibrillation on Hemodialysis: A Multicenter Randomized Controlled Trial. Circulation. 2022;146:1735–1745. doi: 10.1161/CIRCULATIONAHA.121.054990. Search in Google Scholar

Reinecke H, Engelbertz C, Bauersachs R, et al. A Randomized Controlled Trial Comparing Apixaban With the Vitamin K Antagonist Phenprocoumon in Patients on Chronic Hemodialysis: The AXADIA-AFNET 8 Study. Circulation. 2023;147:296–309. doi: 10.1161/CIRCULATIONAHA.122.062779. Search in Google Scholar

Siontis KC, Zhang X, Eckard A, et al. Outcomes Associated With Apixaban Use in Patients With End-Stage Kidney Disease and Atrial Fibrillation in the United States. Circulation. 2018;138:1519–1529. doi: 10.1161/CIRCULATIONAHA.118.035418. Search in Google Scholar

Coleman CI, Kreutz R, Sood NA, et al. Rivaroxaban Versus Warfarin in Patients With Nonvalvular Atrial Fibrillation and Severe Kidney Disease or Undergoing Hemodialysis. Am J Med. 2019;132:1078–1083. doi: 10.1016/j.amjmed.2019.04.013. Search in Google Scholar

Welander F, Renlund H, Dimény E, et al. Direct oral anticoagulants versus warfarin in patients with non-valvular atrial fibrillation and CKD G3-G5D. Clin Kidney J. 2023;16:835–844. doi: 10.1093/ckj/sfad004. Search in Google Scholar

Garlo KG, Steele DJR, Nigwekar SU, et al. Demystifying the Benefits and Harms of Anticoagulation for Atrial Fibrillation in Chronic Kidney Disease. Clin J Am Soc Nephrol. 2019;14:125–136. Search in Google Scholar

US Food and Drug Administration. Eliquis (apixaban) tablets. https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/202155s002lbl.pdf Search in Google Scholar

US Food and Drug Administration. Xarelto (rivaroxaban) tablets. https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/022406s015lbl.pdf Search in Google Scholar

Yao X, Tangri N, Gersh BJ, et al. Renal Outcomes in Anticoagulated Patients With Atrial Fibrillation. J Am Coll Cardiol. 2017;70:2621–2632. doi: 10.1016/j.jacc.2017.09.1087. Search in Google Scholar

Inohara T, Holmes DN, Pieper K, et al. Decline in renal function and oral anticoagulation dose reduction among patients with atrial fibrillation. Heart. 2020;106:358–364. doi: 10.1136/heartjnl-2019-315792. Search in Google Scholar

Coleman CI, Kreutz R, Sood N, et al. Rivaroxaban’s Impact on Renal Decline in Patients With Nonvalvular Atrial Fibrillation: A US MarketScan Claims Database Analysis. Clin Appl Thromb Hemost. 2019;25:1076029619868535. doi: 10.1177/1076029619868535. Search in Google Scholar

Hernandez AV, Bradley G, Khan M, et al. Rivaroxaban vs. warfarin and renal outcomes in non-valvular atrial fibrillation patients with diabetes. Eur Heart J Qual Care Clin Outcomes. 2020;6:301–307. doi: 10.1093/ehjqcco/qcz047. Search in Google Scholar

Pastori D, Ettorre E, Lip GYH, et al. Association of different oral anticoagulants use with renal function worsening in patients with atrial fibrillation: A multicentre cohort study. Br J Clin Pharmacol. 2020;86:2455–2463. doi: 10.1111/bcp.14350. Search in Google Scholar

Ten Cate H, Guzik TJ, Eikelboom J et al. Pleiotropic actions of factor Xa inhibition in cardiovascular prevention: mechanistic insights and implications for anti-thrombotic treatment. Cardiovasc Res. 2021;117:2030–2044. doi: 10.1093/cvr/cvaa263. Search in Google Scholar

Iannucci J, Renehan W, Grammas P. Thrombin, a Mediator of Coagulation, Inflammation, and Neurotoxicity at the Neurovascular Interface: Implications for Alzheimer’s Disease. Front Neurosci. 2020;14:762. doi: 10.3389/fnins.2020.00762. Search in Google Scholar

Spronk HM, de Jong AM, Crijns HJ, et al. Pleiotropic effects of factor Xa and thrombin: what to expect from novel anticoagulants. Cardiovasc Res. 2014;101:344–351. doi: 10.1093/cvr/cvt343. Search in Google Scholar

Ellinghaus P, Perzborn E, Hauenschild P, et al. Expression of pro-inflammatory genes in human endothelial cells: Comparison of rivaroxaban and dabigatran. Thromb Res. 2016;142:44–51. doi: 10.1016/j.thromres.2016.04.008. Search in Google Scholar

Ichikawa H, Shimada M, Narita M, et al. Rivaroxaban, a Direct Factor Xa Inhibitor, Ameliorates Hypertensive Renal Damage Through Inhibition of the Inflammatory Response Mediated by Protease-Activated Receptor Pathway. J Am Heart Assoc. 2019;8:e012195. doi: 10.1161/JAHA.119.012195. Search in Google Scholar

Saifi MA, Annaldas S, Godugu C. A direct thrombin inhibitor, dabigatran etexilate protects from renal fibrosis by inhibiting protease activated receptor-1. Eur J Pharmacol. 2021;893:173838. doi: 10.1016/j.ejphar.2020.173838. Search in Google Scholar

Ishibashi Y, Matsui T, Yamagishi S. Apixaban exerts anti-inflammatory effects in mesangial cells by blocking thrombin/protease-activated receptor-1 system. Thromb Res. 2014;134:1365–1367. doi: 10.1016/j.thromres.2014.09.028. Search in Google Scholar

Fang L, Ohashi K, Ogawa H, et al. Factor Xa inhibitor, edoxaban ameliorates renal injury after subtotal nephrectomy by reducing epithelial-mesenchymal transition and inflammatory response. Physiol Rep. 2022;10:e15218. doi: 10.14814/phy2.15218. Search in Google Scholar

eISSN:
2457-5518
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Medicine, Clinical Medicine, Internal Medicine, Cardiology, Emergency Medicine and Intensive-Care Medicine, Radiology