INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. World Health Organization (WHO). Cardiovascular diseases (CVDs). Available at: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) Search in Google Scholar

2. Libby P, Buring JE, Badimon L et al. Atherosclerosis. Nat Rev Dis Primers. 2019;5:56. doi: 10.1038/s41572-019-0106-z.10.1038/s41572-019-0106-z31420554 Search in Google Scholar

3. Shi X, Gao J, Lv Q, et al. Calcification in Atherosclerotic Plaque Vulnerability: Friend or Foe? Front Physiol. 2020;11:56. doi: 10.3389/fphys.2020.00056.10.3389/fphys.2020.00056701303932116766 Search in Google Scholar

4. Choi SY, Mintz GS. What have we learned about plaque rupture in acute coronary syndromes? Curr Cardiol Rep. 2010;12:338-343. doi: 10.1007/s11886-010-0113-x.10.1007/s11886-010-0113-x20425160 Search in Google Scholar

5. Partida RA, Libby P, Crea F, Jang IK. Plaque erosion: a new in vivo diagnosis and a potential major shift in the management of patients with acute coronary syndromes. Eur Heart J. 2018;39:2070-2076. doi: 10.1093/eurheartj/ehx786.10.1093/eurheartj/ehx786599121529329384 Search in Google Scholar

6. Stefanadis C, Antoniou CK, Tsiachris D, Pietri P. Coronary Atherosclerotic Vulnerable Plaque: Current Perspectives. J Am Heart Assoc. 2017;6:e005543. doi: 10.1161/JAHA.117.005543.10.1161/JAHA.117.005543552404428314799 Search in Google Scholar

7. Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation. 2003;108:1664-1672. doi: 10.1161/01.CIR.0000087480.94275.97.10.1161/01.CIR.0000087480.94275.9714530185 Search in Google Scholar

8. Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114:1852–1866. doi: 10.1161/CIRCRESAHA.114.302721.10.1161/CIRCRESAHA.114.30272124902970 Search in Google Scholar

9. Hafiane A. Vulnerable Plaque, Characteristics, Detection, and Potential Therapies. J Cardiovasc Dev Dis. 2019;6:26. doi: 10.3390/jcdd6030026.10.3390/jcdd6030026678760931357630 Search in Google Scholar

10. Costopoulos C, Brown AJ, Teng Z, Hoole SP, West NE, Samady H, Bennett MR. Intravascular ultrasound and optical coherence tomography imaging of coronary atherosclerosis. Int J Cardiovasc Imaging. 2016;32:189-200. doi: 10.1007/s10554-015-0701-3.10.1007/s10554-015-0701-326153522 Search in Google Scholar

11. Rathod KS, Hamshere SM, Jones DA, Mathur A. Intravascular Ultrasound Versus Optical Coherence Tomography for Coronary Artery Imaging - Apples and Oranges?. Interv Cardiol. 2015;10:8-15. doi: 10.15420/icr.2015.10.1.8.10.15420/icr.2015.10.1.8580846329588667 Search in Google Scholar

12. Knuuti J, Wijns W, Saraste A, et al. ESC Scientific Document Group. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41:407-477. doi: 10.1093/eurheartj/ehz425.10.1093/eurheartj/ehz42531504439 Search in Google Scholar

13. Benedek T, Jako B, Benedek I. Plaque quantification by coronary CT and intravascular ultrasound identifies a low CT density core as a marker of plaque instability in acute coronary syndromes. Int Heart J. 2014;55:22-28. doi: 10.1536/ihj.13-213.10.1536/ihj.13-21324463925 Search in Google Scholar

14. Bittner DO, Mayrhofer T, Puchner SB, et al. Coronary Computed Tomography Angiography-Specific Definitions of High-Risk Plaque Features Improve Detection of Acute Coronary Syndrome. Circ Cardiovasc Imaging. 2018;11:e007657. doi: 10.1161/CIRCIMAGING.118.007657.10.1161/CIRCIMAGING.118.007657620522030354493 Search in Google Scholar

15. Murgia A, Balestrieri A, Crivelli P, et al. Cardiac computed tomography radiomics: an emerging tool for the non-invasive assessment of coronary atherosclerosis. Cardiovasc Diagn Ther. 2020;10:2005-2017. doi: 10.21037/cdt-20-156.10.21037/cdt-20-156775876733381440 Search in Google Scholar

16. Liu W, Zhang Y, Yu CM, et al. Current understanding of coronary artery calcification. J Geriatr Cardiol. 2015;12:668-675. doi: 10.11909/j.issn.1671-5411.2015.06.012. Search in Google Scholar

17. van Rosendael AR, Narula J, Lin FY, et al. Association of High-Density Calcified 1K Plaque With Risk of Acute Coronary Syndrome. JAMA Cardiol. 2020;5:282-290. doi: 10.1001/jamacardio.2019.5315.10.1001/jamacardio.2019.5315699094631968065 Search in Google Scholar

18. Shmilovich H, Cheng VY, Tamarappoo BK, et al. Vulnerable plaque features on coronary CT angiography as markers of inducible regional myocardial hypoperfusion from severe coronary artery stenoses. Atherosclerosis. 2011;219:588-595. doi: 10.1016/j.atherosclerosis.2011.07.128.10.1016/j.atherosclerosis.2011.07.128322684621862017 Search in Google Scholar

19. Brutkiewicz A, Kruk M, Demkow M, et al. The natural history of napkin-ring sign by coronary computed tomography angiography. Postepy Kardiol Interwencyjnej. 2019;15:314-320. doi: 10.5114/aic.2019.87886.10.5114/aic.2019.87886677719231592255 Search in Google Scholar

20. Opincariu D, Benedek T, Chițu M, Raț N, Benedek I. From CT to artificial intelligence for complex assessment of plaque-associated risk. Int J Cardiovasc Imaging. 2020;36:2403-2427. doi: 10.1007/s10554-020-01926-1.10.1007/s10554-020-01926-132617720 Search in Google Scholar

21. Katranas SA, Kelekis AL, Antoniadis AP, Ziakas AG, Giannoglou GD. Differences in Stress Forces and Geometry between Left and Right Coronary Artery: A Pathophysiological Aspect of Atherosclerosis Heterogeneity. Hellenic J Cardiol. 2015;56:217-223. Search in Google Scholar

22. Giannoglou GD, Antoniadis AP, Chatzizisis YS, Louridas GE. Difference in the topography of atherosclerosis in the left versus right coronary artery in patients referred for coronary angiography. BMC Cardiovasc Disord. 2010;10:26. doi: 10.1186/1471-2261-10-26.10.1186/1471-2261-10-26289777120534166 Search in Google Scholar

23. Asakura T, Karino T. Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circ Res. 1990;66:1045-1066. doi: 10.1161/01.res.66.4.1045.10.1161/01.RES.66.4.1045 Search in Google Scholar

24. Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 1999;282:2035-2042. doi: 10.1001/jama.282.21.2035.10.1001/jama.282.21.203510591386 Search in Google Scholar

25. Tuzcu EM, Kapadia SR, Tutar E, et al. High prevalence of coronary atherosclerosis in asymptomatic teenagers and young adults: evidence from intravascular ultrasound. Circulation. 2001;103:2705-2710. doi: 10.1161/01.cir.103.22.2705.10.1161/01.CIR.103.22.2705 Search in Google Scholar

26. Gebhard C, Fuchs TA, Stehli J, et al. Coronary dominance and prognosis in patients undergoing coronary computed tomographic angiography: results from the CONFIRM (COronary CT Angiography EvaluatioN For Clinical Outcomes: An InteRnational Multicenter) registry. Eur Heart J Cardiovasc Imaging. 2015;16:853-862. doi: 10.1093/ehjci/jeu314.10.1093/ehjci/jeu314450579125744341 Search in Google Scholar

27. Veltman CE, de Graaf FR, Schuijf JD, et al. Prognostic value of coronary vessel dominance in relation to significant coronary artery disease determined with non-invasive computed tomography coronary angiography. Eur Heart J. 2012;33:1367-1377. doi: 10.1093/eurheartj/ehs034.10.1093/eurheartj/ehs03422390913 Search in Google Scholar

28. Tuzcu EM, Kapadia SR, Tutar E, et al. High prevalence of coronary atherosclerosis in asymptomatic teenagers and young adults: evidence from intravascular ultrasound. Circulation. 2001;103:2705-2710. doi: 10.1161/01.cir.103.22.2705.10.1161/01.CIR.103.22.2705 Search in Google Scholar

29. Motoyama S, Sarai M, Harigaya H, et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol. 2009;54:49-57. doi: 10.1016/j.jacc.2009.02.068.10.1016/j.jacc.2009.02.06819555840 Search in Google Scholar

30. Thomsen C, Abdulla J. Characteristics of high-risk coronary plaques identified by computed tomographic angiography and associated prognosis: a systematic review and meta-analysis. Eur Heart J Cardiovasc Imaging. 2016;17:120-129. doi: 10.1093/ehjci/jev325.10.1093/ehjci/jev325488289626690951 Search in Google Scholar

31. Elsman P, van ‘t Hof AW, Hoorntje JC, et al. Effect of coronary occlusion site on angiographic and clinical outcome in acute myocardial infarction patients treated with early coronary intervention. Am J Cardiol. 2006;97:1137-1141. doi: 10.1016/j. amjcard.2005.11.027. Search in Google Scholar

32. Tang B, Yang H. Post percutaneous coronary interventional outcomes on proximal vs non-proximal lesions of the left and right coronary arteries: A systematic review and meta-analysis. Medicine (Baltimore). 2019;98:e16905. doi: 10.1097/MD.0000000000016905.10.1097/MD.0000000000016905683142931415437 Search in Google Scholar

33. Goldberg A, Southern DA, Galbraith PD, Traboulsi M, Knudtson ML, Ghali WA; Alberta Provincial Project for Outcome Assessment in Coronary Heart Disease (APPROACH) Investigators. Coronary dominance and prognosis of patients with acute coronary syndrome. Am Heart J. 2007;154:1116-1122. doi: 10.1016/j.ahj.2007.07.041.10.1016/j.ahj.2007.07.04118035084 Search in Google Scholar

34. Parikh NI, Honeycutt EF, Roe MT, et al. Left and codominant coronary artery circulations are associated with higher inhospital mortality among patients undergoing percutaneous coronary intervention for acute coronary syndromes: report From the National Cardiovascular Database Cath Percutaneous Coronary Intervention (CathPCI) Registry. Circ Cardiovasc Qual Outcomes. 2012;5:775-782. doi: 10.1161/CIRCOUTCOMES.111.964593.10.1161/CIRCOUTCOMES.111.96459323110791 Search in Google Scholar

eISSN:
2457-5518
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Medicine, Clinical Medicine, Emergency Medicine and Intensive-Care Medicine, Radiology, Internal Medicine, Cardiology