1. bookVolume 10 (2020): Edizione 3 (July 2020)
Dettagli della rivista
License
Formato
Rivista
eISSN
2449-6499
Prima pubblicazione
30 Dec 2014
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Accesso libero

Evolutionary Algorithm with a Configurable Search Mechanism

Pubblicato online: 23 May 2020
Volume & Edizione: Volume 10 (2020) - Edizione 3 (July 2020)
Pagine: 151 - 171
Ricevuto: 05 Sep 2019
Accettato: 01 Apr 2020
Dettagli della rivista
License
Formato
Rivista
eISSN
2449-6499
Prima pubblicazione
30 Dec 2014
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese

[1] S.P. Adam, S.A.N. Alexandropoulos, P.M. Pardalos, M.N. Vrahatis, No free lunch theorem: a review, Approximation and Optimization, Springer, 57-82, 2019.10.1007/978-3-030-12767-1_5Search in Google Scholar

[2] E.S. Ali, S.M. Abd-Elazim, Bacteria foraging optimization algorithm based load frequency controller for interconnected power system, Int. J. of Electrical Power & Energy Systems, 33(3), 633-638, 2011.10.1016/j.ijepes.2010.12.022Search in Google Scholar

[3] T. de Fátima Araújo, W. Uturbey, Performance assessment of PSO, DE and hybrid PSO–DE algorithms when applied to the dispatch of generation and demand, Int. J. of Electrical Power & Energy Systems, 47, 205-217, 2013.10.1016/j.ijepes.2012.11.002Search in Google Scholar

[4] E. Atashpaz-Gargari, C. Lucas, Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition, 2007 IEEE Congress on Evolutionary Comp., 2007.10.1109/CEC.2007.4425083Search in Google Scholar

[5] Ł. Bartczuk, A. Przybył, K. Cpałka, A new approach to nonlinear modelling of dynamic systems based on fuzzy rules, Int. J. of Applied Mathematics and Computer Science, 26(3), 603-621, 2016.10.1515/amcs-2016-0042Search in Google Scholar

[6] Z.S. Chen, B. Zhu, Y.L. He, L.A. Yu, A PSO based virtual sample generation method for small sample sets: Applications to regression datasets, Engineering Applications of Artificial Intelligence, 59, 236-243, 2017.10.1016/j.engappai.2016.12.024Search in Google Scholar

[7] S. Chu, P. Tsai, J. Pan, Cat Swarm Optimization, LNCS, 4099, 854-858, 2006.10.1007/978-3-540-36668-3_94Search in Google Scholar

[8] P. Civicioglu, Backtracking search optimization algorithm for numerical optimization problems, Applied Mathematics and Computation, 219(15), 8121–8144, 2013.10.1016/j.amc.2013.02.017Search in Google Scholar

[9] K. Cpałka, Design of interpretable fuzzy systems, Springer, 2017.10.1007/978-3-319-52881-6Search in Google Scholar

[10] M.Črepinšek, S. H. Liu, M. Mernik, Exploration and exploitation in evolutionary algorithms: A survey, ACM computing surveys (CSUR), 45(3), 1-33, 2013.10.1145/2480741.2480752Search in Google Scholar

[11] L. Davis, Handbook of genetic algorithms, 1991.Search in Google Scholar

[12] D. Dawar & S.A. Ludwig, Effect of Strategy Adaptation on Differential Evolution in Presence and Absence of Parameter Adaptation: An Investigation, J. of Artificial Intelligence and Soft Computing Research, 8(3), 211-235, 2018.10.1515/jaiscr-2018-0014Search in Google Scholar

[13] J. Del Ser, E. Osaba, D. Molina, X.S. Yang, S. Salcedo-Sanz, D. Camacho, S. Das, P.N. Suganthan, C.A.C. Coello, F. Herrera, Bio-inspired computation: Where we stand and what’s next, Swarm and Evolutionary Computation, 48, 220-250, 2019.10.1016/j.swevo.2019.04.008Search in Google Scholar

[14] H. Faris, I. Aljarah, M.A. Al-Betar, S. Mirjalili, Grey wolf optimizer: a review of recent variants and applications, Neural Computing and Applications, 30(2), 2018, 413-435.10.1007/s00521-017-3272-5Search in Google Scholar

[15] A.H. Gandomi, X.S. Yang, S. Talatahari, S. Deb, Coupled eagle strategy and differential evolution for unconstrained and constrained global optimization, Computers & Mathematics with Applications, 63(1), 191-200, 2012.10.1016/j.camwa.2011.11.010Search in Google Scholar

[16] H. Garg, A hybrid PSO-GA algorithm for constrained optimization problems, Applied Mathematics and Computation, 274, 292-305, 2016.10.1016/j.amc.2015.11.001Search in Google Scholar

[17] Z.W. Geem, J.H. Kim, G. Loganathan, A New Heuristic Optimization Algorithm: Harmony Search, Simulation, 76(2), 60-68, 2001.10.1177/003754970107600201Search in Google Scholar

[18] E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Longman Publishing Co., 1989.Search in Google Scholar

[19] D. Grochol, L. Sekanina, M. Zadnik, J. Korenek, V. Kosar, Evolutionary circuit design for fast FPGA-based classification of network application protocols, Applied Soft Computing, 38, 933-941, 2016.10.1016/j.asoc.2015.09.046Search in Google Scholar

[20] K. Hussain, M.N.M. Salleh, S. Cheng, Y. Shi, Metaheuristic research: a comprehensive survey, Artificial Intelligence Review, 52(4), 2191-2233, 2019.10.1007/s10462-017-9605-zSearch in Google Scholar

[21] T. Jayabarathi, T. Raghunathan, B.R. Adarsh, P.N. Suganthan, Economic dispatch using hybrid grey wolf optimizer, Energy, 111, 630-641, 2016.10.1016/j.energy.2016.05.105Search in Google Scholar

[22] D. Karaboga, B. Basturk, 2007, Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems, LNAI, 4529, Berlin:Springer-Verlag, 789–98, 2007.10.1007/978-3-540-72950-1_77Search in Google Scholar

[23] J. Kennedy, Particle swarm optimization, Encyclopedia of Machine Learning, 760-766, 2010.10.1007/978-0-387-30164-8_630Search in Google Scholar

[24] J. Kennedy, R. Eberhart, Particle swarm optimization, Proc. IEEE Int. Conf. on Neural Networks, 4, 1942-1948, 1995.Search in Google Scholar

[25] E. Krell, A. Sheta, A.P.R. Balasubramanian, S.A. King, Collision-Free Autonomous Robot Navigation in Unknown Environments Utilizing PSO for Path Planning. J. of Artificial Intelligence and Soft Computing Research, 9(4), 267-282, 2019.10.2478/jaiscr-2019-0008Search in Google Scholar

[26] K. Łapa, Meta-optimization of multi-objective population-based algorithms using multi-objective performance metrics, Information Sciences, 489, 193-204, 2019.10.1016/j.ins.2019.03.054Search in Google Scholar

[27] K. Łapa, K. Cpałka, Flexible fuzzy PID controller (FFPIDC) and a nature-inspired method for its construction, IEEE Trans. on Industrial Informatics, 14(3), 1078-1088, 2018.10.1109/TII.2017.2771953Search in Google Scholar

[28] K. Łapa, K. Cpałka, L. Wang, New method for design of fuzzy systems for nonlinear modelling using different criteria of interpretability, Artificial Intelligence and Soft Computing, LNCS, 8467, Springer, 217-232, 2014.10.1007/978-3-319-07173-2_20Search in Google Scholar

[29] K. Łapa, K. Cpałka, M. Zalasiński, Algorithm Based on Population with a Flexible Search Mechanism, IEEE Access, 7, 132253-132270, 2019.10.1109/ACCESS.2019.2941182Search in Google Scholar

[30] J. Luo, J. Liu, Y. Hu, An MILP model and a hybrid evolutionary algorithm for integrated operation optimisation of multi-head surface mounting machines in PCB assembly, Int. J. of Production Research, 55(1), 145-160, 2017.10.1080/00207543.2016.1200154Search in Google Scholar

[31] S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey wolf optimizer, Advances in Engineering Software, 69, 46-61, 2014.10.1016/j.advengsoft.2013.12.007Search in Google Scholar

[32] S. Mirjalili, A. Lewis, The whale optimization algorithm, Advances in Engineering Software, 95, 51-67, 2016.10.1016/j.advengsoft.2016.01.008Search in Google Scholar

[33] M. Mizera, P. Nowotarski, A. Byrski, M. Kisiel-Dorohinicki, Fine Tuning of Agent-Based Evolutionary Computing, J. of Artificial Intelligence and Soft Computing Research, 9(2), 81-97, 2019.10.2478/jaiscr-2018-0026Search in Google Scholar

[34] K. Ono, Y. Hanada, M. Kumano, M. Kimura, Enhancing Island Model Genetic Programming by Controlling Frequent Trees, J. of Artificial Intelligence and Soft Computing Research, 9(1), 51-65, 2019.10.2478/jaiscr-2018-0024Search in Google Scholar

[35] E. Osaba, F. Diaz, E. Onieva, Golden ball: a novel meta-heuristic to solve combinatorial optimization problems based on soccer concepts, Applied Intelligence, 41(1), 145-166, 2014.10.1007/s10489-013-0512-ySearch in Google Scholar

[36] E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, GSA: A Gravitational Search Algorithm, Information Sciences, 179(13), 2232-2248, 2009.10.1016/j.ins.2009.03.004Search in Google Scholar

[37] L. Rutkowski, Identification of MISO nonlinear regressions in the presence of a wide class of disturbances. IEEE Trans. on Information Theory, 37(1), 214-216, 1991.10.1109/18.61144Search in Google Scholar

[38] L. Rutkowski, Computational intelligence: methods and techniques, Springer Science & Business Media, 2008.Search in Google Scholar

[39] S. Sadiqbatcha, S. Jafarzadeh, Y. Ampatzidis, Particle Swarm Optimization for Solving a Class of Type-1 And Type-2 Fuzzy Nonlinear Equations, J. of Artificial Intelligence and Soft Computing Research, 8(2), 103-110, 2018.10.1515/jaiscr-2018-0007Search in Google Scholar

[40] K. Sörensen, Metaheuristics—the metaphor exposed, Int. Trans. in Operational Research, 22(1), 3-18, 2015.10.1111/itor.12001Search in Google Scholar

[41] R. Storn, K. Price, Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces, J. of Global Optimization, 11(4), 341-359, 1997.10.1023/A:1008202821328Search in Google Scholar

[42] J. Szczypta, A. Przybył, K. Cpałka, Some aspects of evolutionary designing optimal controllers, Artificial Intelligence and Soft Computing, LNCS, 7895, Springer, 91-100, 2013.10.1007/978-3-642-38610-7_9Search in Google Scholar

[43] Y. Tan, Y. Zhu, Fireworks Algorithm for Optimization, LNCS, 6145, 355-364, 2010.10.1007/978-3-642-13495-1_44Search in Google Scholar

[44] G. Tambouratzis, Using particle swarm optimization to accurately identify syntactic phrases in free text. J. of Artificial Intelligence and Soft Computing Research, 8(1), 63-77, 2018.10.1515/jaiscr-2018-0004Search in Google Scholar

[45] D. Teodorovic, P. Lucic, G. Markovic, M. D. Orco, Bee Colony Optimization: Principles and Applications, 2006 8th Seminar on Neural Network Applications in Electrical Engineering, 2006.10.1109/NEUREL.2006.341200Search in Google Scholar

[46] B. Wang, X. Jin, B. Cheng, Lion pride optimizer: An optimization algorithm inspired by lion pride behavior, Science China Information Sciences, 55(10), 2369-2389, 2012.10.1007/s11432-012-4548-0Search in Google Scholar

[47] J.J. Liang, B.Y. Qu, P.N. Suganthan, A.G. Hernandez-Diaz, Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session on Real-Parameter Optimization, https://alroomi.org/multimedia/CEC_Database/CEC2013/RealParameterOptimization/_TechnicalReport.pdf, 2013.Search in Google Scholar

[48] Y. Xu, O. Ding, R. Qu, K. Li, Hybrid multi-objective evolutionary algorithms based on decomposition for wireless sensor network coverage optimization, Applied Soft Computing, 68, 268-282, 2018.10.1016/j.asoc.2018.03.053Search in Google Scholar

[49] X. Yang, Firefly Algorithms for Multimodal Optimization, Stochastic Algorithms: Foundations and Applications, 169-178, 2009.10.1007/978-3-642-04944-6_14Search in Google Scholar

[50] X. Yang, S. Deb, Cuckoo Search via Levy flights, 2009 World Congress on Nature & Biologically Inspired Computing, 2009.10.1109/NABIC.2009.5393690Search in Google Scholar

[51] X. Yang, A new metaheuristic bat-inspired algorithm, Nature inspired cooperative strategies for optimization, 65-74, 2010.10.1007/978-3-642-12538-6_6Search in Google Scholar

[52] M. Zalasiński, K. Cpałka, New algorithm for online signature verification using characteristic hybrid partitions, Information Systems Architecture and Technology: Proc. of 36th Int. Conf. on Information Systems Architecture and Technology – ISAT 2015 – Part IV, Advances in Intelligent Systems and Computing, 432, Springer, 147-157, 2016.10.1007/978-3-319-28567-2_13Search in Google Scholar

[53] M. Zalasiński, K. Cpałka, Novel algorithm for the on-line signature verification using selected discretization points groups, Artificial Intelligence and Soft Computing, LNCS, 7894, Springer, 493-502, 2013.10.1007/978-3-642-38658-9_44Search in Google Scholar

[54] M. Zalasiński, K. Cpałka, Y. Hayashi, New fast algorithm for the dynamic signature verification using global features values, Artificial Intelligence and Soft Computing, LNCS, 9120, Springer, 175-188, 2015.10.1007/978-3-319-19369-4_17Search in Google Scholar

[55] M. Zalasiński, K. Cpałka, E. Rakus-Andersson, An idea of the dynamic signature verification based on a hybrid approach, Artificial Intelligence and Soft Computing, LNCS, 9693, Springer, 232-246, 2016.10.1007/978-3-319-39384-1_21Search in Google Scholar

[56] M. Zalasiński, K. Łapa, K. Cpałka, Prediction of values of the dynamic signature features, Expert Systems with Applications, 104, 86-96, 2018.10.1016/j.eswa.2018.03.028Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo