INFORMAZIONI SU QUESTO ARTICOLO

Cita

Heede, P.V.d. and N.D. Belie, 2012. Environmental impact and life cycle assessment (LCA) of traditional and green concretes: literature review and theoretical calculations Cem. Concr. Comp, 34(431). https://doi.org/10.1016/j.cemconcomp.2012.01.004.10.1016/j.cemconcomp.2012.01.004 Search in Google Scholar

Monteiro P, 2012. Portland Cement. Powerpoint Presentation. University of California - Berkley, p. 1-38. Search in Google Scholar

Boukhelkhal, A., et al., 2016. Effects of marble powder as a partial replacement of cement on some engineering properties of selfcompacting concrete. J. Adhes. Sci. Technol,30(22):p.2405-2419. https://doi.org/10.1080/01694243.2016.1184402.10.1080/01694243.2016.1184402 Search in Google Scholar

Schneider, M., et al., 2011. Sustainable cement production-present and future. Cem. Concr. Res, 41(642). https://doi.org/10.1016/j.cemconres.2011.03.019.10.1016/j.cemconres.2011.03.019 Search in Google Scholar

Kosmatka, S.H. and M.L.,2011. Wilson, Design and Control of Concrete Mixtures. Port. Cem. Assoc., Skokie, III. Search in Google Scholar

Penson Curtis Robert, 2019. Calcined calcium bentonite clay as a partial replacement of Portland cement in mortar. University of British Columbia, https://dx.doi.org/10.14288/1.0376847. Search in Google Scholar

Rackel S N, 2011. Approche performantielle des bétons avec Métakaolins obtenus par calcination flash. Thèse de doctorat, Université de Toulouse. Search in Google Scholar

Pelisser, F., A. Vieira, and A M Bernardin,2018. Efficient self-compacting concrete with low cement consumption. J. Clean. Prod, 175: p. 324-332. http://doi:10.1590/s1678-86212020000200387.10.1590/s1678-86212020000200387 Search in Google Scholar

Taher A, 2003. Effect of Heat on The Behaviour of Montmorillonite Clay In The Presence of Lime. Role of Cement Science In Sustainable Development, Dundee:Thomas Telford.: p. 311-318. doi: 10.1680/rocsisd.32460.0031.10.1680/rocsisd.32460.0031 Search in Google Scholar

R Sharma and R A Khan,2018. Influence of copper slag and metakaolin on the durability of self-compacting concrete. J. Clean. Prod, (171): p. 1171–1186. https://doi.org/10.1016/j.jclepro.2017.10.029.10.1016/j.jclepro.2017.10.029 Search in Google Scholar

Memon, S.A., et al., 2011. Utilization of Pakistani bentonite as partial replacement of cement in concrete. Construction and Building Materials, 30(0): p. 237-242. http://doi:10.1016/j.conbuildmat.2011.11.021.10.1016/j.conbuildmat.2011.11.021 Search in Google Scholar

Rajczyk, J. and B. Langier, 2012. Concrete Composite Properties with Modified Sodium Bentonite in Material Application Engineering. Advanced Materials Research, Trans Tech Pub, p. 154-157; https://doi.org/10.4028/www.scientific.net/AMR.583.154.10.4028/www.scientific.net/AMR.583.154 Search in Google Scholar

Mirza, J., et al., 2009. Pakistani bentonite in mortars and concrete as low cost construction material. Applied Clay Science, 45(4): p. 220-226. http://doi:10.1016/j.clay.2009.06.011.10.1016/j.clay.2009.06.011 Search in Google Scholar

Ahmad, S., et al., 2011. Effect of Pakistani bentonite on properties of mortar and concrete. Clay Minerals, 2011. 46(1): p. 85-92. http://doi:10.1180/claymin.2011.046.1.85.10.1180/claymin.2011.046.1.85 Search in Google Scholar

Khushnood, R.A., et al., 2014. Experimental Investigation on Use of Wheat Straw Ash and Bentonite in Self-Compacting Cementitious System. Advances in Materials Science and Engineering, 2014: p. 11. https://doi.org/10.1155/2014/832508.10.1155/2014/832508 Search in Google Scholar

Taylor-Lange, S.C., et al., 2015. Calcined kaolinite–bentonite clay blends as supplementary cementitious materials. Applied Clay Science, 108: p. 84-93. http://dx.doi.org/10.1016/j.clay.2015.01.025.10.1016/j.clay.2015.01.025 Search in Google Scholar

Zine El-Abidine, L. and al, 2020. Experimental investigation on effects of calcined bentonite on fresh,strength and durability properties of sustainable self-compactingconcrete. Construction and Building Materials (230): p. 1-11. https://doi.org/10.1016/j.conbuildmat.2019.117062.10.1016/j.conbuildmat.2019.117062 Search in Google Scholar

NF EN 196-1,2006. Méthodes d’essais des ciments - Partie 1 : détermination des résistances mécaniques. Search in Google Scholar

ASTM C150 M, 2011. Standard Specification for Portland Cement” ASTM International, West Conshohocken, PA. Search in Google Scholar

NF EN 197-1, 2012. ciment - Partie 1: composition, spécifications et critères de conformité des ciments courants. Search in Google Scholar

NF EN 933-1, 2012. Essais pour déterminer les caractéristiques géométriques des granulats - Partie 1 : détermination de la granularité - Analyse granulométrique par tamisage. Search in Google Scholar

NF P15-403, 1963. Liants hydrauliques. Technique des essais. Sable normal et mortier normal. Search in Google Scholar

NF P 15-467, 1985. Liants hydrauliques - Méthode pratique instrumentale d’analyse des ciments par spectrométrie de fluorescence des rayons X. Search in Google Scholar

Hluchy M M, 1999. The value of teaching X-ray techniques and clay mineralogy to undergraduates. journal. Geoscience education, (47): p. 236-240. https://doi.org/10.5408/1089-9995-47.3.236.10.5408/1089-9995-47.3.236 Search in Google Scholar

Brady, et al., 1995. New uses for powder X-ray diffractio expriments in the undergraduate curriculum. Journal. Geol education, 43(5): p. 466-470.10.5408/0022-1368-43.5.466 Search in Google Scholar

Hollecher and Kurt (2012), a long-term mineralogy practical exam, in:brady, J Mogk,D and Perkins (eds) Teaching Mineralogy, Mineragical Society of America p. 43-46. Search in Google Scholar

Perkins, Dester, and Sorensen (2021), Mineral Synthesis and X-ray Diffraction Experiments in: Brady, J Mogk, D. and Perkins (eds.) Teaching Mineralogy, Mineragical. Society of America p. 81-90. Search in Google Scholar

NF P 18-582 (2017), Analyse thermogravimétrique (ATD_TG). Search in Google Scholar

Garg, N. and J. Skibsted, 2014. Hermal activation of a pure montmorillonite clay and its reactivity in cementations systems. J. Phys. Chem, (118): p. 11464–11477. http://doi:10.1021/jp502529d.10.1021/jp502529d Search in Google Scholar

Abali, Y., S.U. Bayca, and S. Targan, 2006. Evaluation of blends tincal waste, volcanic tuff, bentonite and fly ash for use as a cement admixture. Journal of Hazardous Materials, 131(1–3): p. 126-130. http://doi:10.1016/j.jhazmat.2005.09.031.10.1016/j.jhazmat.2005.09.03116314042 Search in Google Scholar

Sonebi, M., et al., 2012. Characterisation of the performance of sustainable groucontaining bentonite for geotechnical applications, in The international conference on Sustainable Built Environment for Now and the Future, Hanoi, Vietnam p. 1-10. Search in Google Scholar

ASTM C618 a, 2008. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International. Search in Google Scholar

Khelifa Mohammed Rissel, 2009. Effet de l’attaque sulfatique externe sur la durabilité des bétons autoplaçants, 2009, Université d’Orléans. Search in Google Scholar

Hu, Y., Diao, L., Lai, Z.Y., He, Yan, T., He, X., Wu, J., Lu, Z.Y., Lv, S.Z. (2019). Effects of bentonite on pore structure and permeability of cement mortar. Construction and building materials, vol. 224, 276-283, DOI: 10.1016/j.conbuldmat.2019.08.037. Search in Google Scholar

Man, X.Y., Haque, M.A., Chen, B (2019). Engineering propreties and microstructure analyses of magnesium phosphate cement mortar containing bentonite clay. Construction and building materials, Vol. 227, DOI: 10.1016/j.conbuldmat.2019.08.037. Search in Google Scholar

Noureddine, M., Khaled, B., Abdelbaki, B., (2018). Study of the impact of bentonite on the physico-mechanical and flow properties of cement grout. Cogent engineering, 5: 1446252, DOI.org/10.1080/23311916.2018.1446252. Search in Google Scholar

eISSN:
2284-7197
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Engineering, Introductions and Overviews, other, Electrical Engineering, Energy Engineering, Geosciences, Geodesy