Department of Electronics and Communication Engineering, Faculty of Engineering and Technology, SRM Institute of Science and TechnologyGhaziabad, India
Department of Electronics and Communication Engineering, Faculty of Engineering and Technology, SRM Institute of Science and TechnologyGhaziabad, India
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Buza, E., Omanovic, S., & Huseinovic, A. (2013, October). Pothole Detection with Image Processing and Spectral Clustering. In proceedings of the 2nd International Conference on Information Technology and Computer Networks (Vol. 810, P. 4853).BuzaE.OmanovicS.HuseinovicA.2013OctoberPothole Detection with Image Processing and Spectral ClusteringInproceedings of the 2nd International Conference on Information Technology and Computer Networks8104853Search in Google Scholar
Cao, M., Tran, Q., Nguyen, N., & Chang, K. (2020). Survey on performance of deep learning models for detecting road damages using multiple dashcam image resources. Advanced Engineering Informatics, 46, 101182. DOI: 10.1016/j.aei.2020.101182CaoM.TranQ.NguyenN.ChangK.2020Survey on performance of deep learning models for detecting road damages using multiple dashcam image resourcesAdvanced Engineering Informatics4610118210.1016/j.aei.2020.101182Open DOISearch in Google Scholar
Chougule, S., & Barhatte, A. (2023). Smart Pothole Detection System using Deep Learning Algorithms. International Journal of Intelligent Transportation Systems Research, 21(3), 483–492. DOI: 10.1007/s13177-023-00363-3ChouguleS.BarhatteA.2023Smart Pothole Detection System using Deep Learning AlgorithmsInternational Journal of Intelligent Transportation Systems Research21348349210.1007/s13177-023-00363-3Open DOISearch in Google Scholar
Deepak, S., & Ameer, P. (2022b). Brain tumor categorization from imbalanced MRI dataset using weighted loss and deep feature fusion. Neurocomputing, 520, 94–102. DOI: 10.1016/j.neucom.2022.11.039DeepakS.AmeerP.2022bBrain tumor categorization from imbalanced MRI dataset using weighted loss and deep feature fusionNeurocomputing5209410210.1016/j.neucom.2022.11.039Open DOISearch in Google Scholar
Dhiman, A., & Klette, R. (2019). Pothole detection using computer vision and learning. IEEE Transactions on Intelligent Transportation Systems, 21(8), 3536–3550. DOI: 10.1109/tits.2019.2931297DhimanA.KletteR.2019Pothole detection using computer vision and learningIEEE Transactions on Intelligent Transportation Systems2183536355010.1109/tits.2019.2931297Open DOISearch in Google Scholar
Du, R., Qiu, G., Gao, K., Hu, L., & Liu, L. (2020). Abnormal road surface recognition based on smartphone acceleration sensor. Sensors, 20(2), 451. DOI: 10.3390/s20020451DuR.QiuG.GaoK.HuL.LiuL.2020Abnormal road surface recognition based on smartphone acceleration sensorSensors20245110.3390/s20020451Open DOISearch in Google Scholar
Eriksson, J., Girod, L., Hull, B., Newton, R., Madden, S., & Balakrishnan, H. (2008). The pothole patrol. DOI: 10.1145/1378600.1378605ErikssonJ.GirodL.HullB.NewtonR.MaddenS.BalakrishnanH.2008The pothole patrol10.1145/1378600.1378605Open DOISearch in Google Scholar
Fan, R., Ai, X., & Dahnoun, N. (2018). Road surface 3D reconstruction based on dense subpixel disparity map estimation. IEEE Transactions on Image Processing, 27(6), 3025–3035. DOI: 10.1109/tip.2018.2808770FanR.AiX.DahnounN.2018Road surface 3D reconstruction based on dense subpixel disparity map estimationIEEE Transactions on Image Processing2763025303510.1109/tip.2018.2808770Open DOISearch in Google Scholar
Gagliardi, V., Giammorcaro, B., Francesco, B., & Sansonetti, G. (2023). Deep neural networks for asphalt pavement distress detection and condition assessment. In Earth Resources and Environmental Remote Sensing/GIS Applications XIV, 35. DOI: 10.1117/12.2688512GagliardiV.GiammorcaroB.FrancescoB.SansonettiG.2023Deep neural networks for asphalt pavement distress detection and condition assessmentInEarth Resources and Environmental Remote Sensing/GIS Applications XIV3510.1117/12.2688512Open DOISearch in Google Scholar
Gopalakrishnan, K., Khaitan, S. K., Choudhary, A., & Agrawal, A. (2017). Deep Convolutional Neural Networks with transfer learning for computer vision-based data-driven pavement distress detection. Construction and Building Materials, 157, 322–330. DOI: 10.1016/j.conbuildmat.2017.09.110GopalakrishnanK.KhaitanS. K.ChoudharyA.AgrawalA.2017Deep Convolutional Neural Networks with transfer learning for computer vision-based data-driven pavement distress detectionConstruction and Building Materials15732233010.1016/j.conbuildmat.2017.09.110Open DOISearch in Google Scholar
Heo, D., Choi, J., Kim, S., Tak, T., & Zhang, S. (2023). Image-Based pothole detection using Multi-Scale feature network and risk assessment. Electronics, 12(4), 826. DOI: 10.3390/electronics12040826HeoD.ChoiJ.KimS.TakT.ZhangS.2023Image-Based pothole detection using Multi-Scale feature network and risk assessmentElectronics12482610.3390/electronics12040826Open DOISearch in Google Scholar
Hoang, N., & Nguyen, Q. (2018). A novel method for asphalt pavement crack classification based on image processing and machine learning. Engineering With Computers, 35(2), 487–498. DOI: 10.1007/s00366-018-0611-9HoangN.NguyenQ.2018A novel method for asphalt pavement crack classification based on image processing and machine learningEngineering With Computers35248749810.1007/s00366-018-0611-9Open DOISearch in Google Scholar
Khater, H. A., & Gamel, S. A. (2023). Early diagnosis of respiratory system diseases (RSD) using deep convolutional neural networks. Journal of Ambient Intelligence and Humanized Computing, 14(9), 12273–12283. DOI: 10.1007/s12652-023-04659-wKhaterH. A.GamelS. A.2023Early diagnosis of respiratory system diseases (RSD) using deep convolutional neural networksJournal of Ambient Intelligence and Humanized Computing149122731228310.1007/s12652-023-04659-wOpen DOISearch in Google Scholar
Koch, C., & Brilakis, I. (2011). Pothole detection in asphalt pavement images. Advanced Engineering Informatics, 25(3), 507–515. DOI: 10.1016/j.aei.2011.01.002KochC.BrilakisI.2011Pothole detection in asphalt pavement imagesAdvanced Engineering Informatics25350751510.1016/j.aei.2011.01.002Open DOISearch in Google Scholar
Laurent, J., Hébert, J. F., Lefebvre, D., & Savard, Y. (2012). Using 3D laser profiling sensors for the automated measurement of road surface conditions. In Rilem bookseries (pp. 157–167). DOI: 10.1007/978-94-007-4566-7_16LaurentJ.HébertJ. F.LefebvreD.SavardY.2012Using 3D laser profiling sensors for the automated measurement of road surface conditionsInRilem bookseries15716710.1007/978-94-007-4566-7_16Open DOISearch in Google Scholar
Lee, S., Le, T. H. M., & Kim, Y. (2022). Prediction and detection of potholes in urban roads: Machine learning and deep learning based image segmentation approaches. Developments in the Built Environment, 13, 100109. DOI: 10.1016/j.dibe.2022.100109LeeS.LeT. H. M.KimY.2022Prediction and detection of potholes in urban roads: Machine learning and deep learning based image segmentation approachesDevelopments in the Built Environment1310010910.1016/j.dibe.2022.100109Open DOISearch in Google Scholar
Li, S., Yuan, C., Liu, D., & Cai, H. (2016). Integrated processing of image and GPR data for automated pothole detection. Journal of Computing in Civil Engineering, 30(6). DOI: 10.1061/(asce)cp.1943-5487.0000582LiS.YuanC.LiuD.CaiH.2016Integrated processing of image and GPR data for automated pothole detectionJournal of Computing in Civil Engineering30610.1061/(asce)cp.1943-5487.0000582Open DOISearch in Google Scholar
Moosaei, H., Ganaie, M., Hladík, M., & Tanveer, M. (2022). Inverse free reduced universum twin support vector machine for imbalanced data classification. Neural Networks, 157, 125–135. DOI: 10.1016/j.neunet.2022.10.003MoosaeiH.GanaieM.HladíkM.TanveerM.2022Inverse free reduced universum twin support vector machine for imbalanced data classificationNeural Networks15712513510.1016/j.neunet.2022.10.003Open DOISearch in Google Scholar
Nogales, R. E., & Benalcázar, M. E. (2023). Hand Gesture Recognition Using Automatic Feature Extraction and Deep Learning Algorithms with Memory. Big Data and Cognitive Computing, 7(2), 102. DOI: 10.3390/bdcc7020102NogalesR. E.BenalcázarM. E.2023Hand Gesture Recognition Using Automatic Feature Extraction and Deep Learning Algorithms with MemoryBig Data and Cognitive Computing7210210.3390/bdcc7020102Open DOISearch in Google Scholar
Pan, Y., Zhang, X., Tian, J., Jin, X., Luo, L., & Yang, K. (2017). Mapping asphalt pavement aging and condition using multiple endmember spectral mixture analysis in Beijing, China. Journal of Applied Remote Sensing, 11(1), 016003. DOI: 10.1117/1.jrs.11.016003PanY.ZhangX.TianJ.JinX.LuoL.YangK.2017Mapping asphalt pavement aging and condition using multiple endmember spectral mixture analysis in Beijing, ChinaJournal of Applied Remote Sensing11101600310.1117/1.jrs.11.016003Open DOISearch in Google Scholar
Peralta-López, J., Morales-Viscaya, J., Lázaro-Mata, D., Villaseñor-Aguilar, M., Prado-Olivarez, J., Pérez-Pinal, F., Padilla-Medina, J., Martínez-Nolasco, J., & Barranco-Gutiérrez, A. (2023). Speed Bump and Pothole Detection Using Deep Neural Network with Images Captured through ZED Camera. Applied Sciences, 13(14), 8349. DOI: 10.3390/app13148349Peralta-LópezJ.Morales-ViscayaJ.Lázaro-MataD.Villaseñor-AguilarM.Prado-OlivarezJ.Pérez-PinalF.Padilla-MedinaJ.Martínez-NolascoJ.Barranco-GutiérrezA.2023Speed Bump and Pothole Detection Using Deep Neural Network with Images Captured through ZED CameraApplied Sciences1314834910.3390/app13148349Open DOISearch in Google Scholar
Pereira, V., Tamura, S., Hayamizu, S., & Fukai, H. (2018). Pereira, V., Tamura, S., Hayamizu, S., & Fukai, H. (2018, July). A deep learning-based approach for road pothole detection in timor leste. In 2018 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI) (pp. 279–284). IEEE. In IEEE International Conference on Service Operations and Logistics, and Informatics. DOI: 10.1109/soli.2018.8476795PereiraV.TamuraS.HayamizuS.FukaiH.2018Pereira, V., Tamura, S., Hayamizu, S., & Fukai, H. (2018, July).A deep learning-based approach for road pothole detection in timor lesteIn2018 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI)279284IEEEIn IEEE International Conference on Service Operations and Logistics, and Informatics.10.1109/soli.2018.8476795Open DOISearch in Google Scholar
Satti, S. K., Rajareddy, G. N. V., Mishra, K., & Gandomi, A. H. (2024). Potholes and traffic signs detection by classifier with vision transformers. Scientific Reports, 14(1). DOI: 10.1038/s41598-024-52426-4SattiS. K.RajareddyG. N. V.MishraK.GandomiA. H.2024Potholes and traffic signs detection by classifier with vision transformersScientific Reports14110.1038/s41598-024-52426-4Open DOISearch in Google Scholar
Singh, P., Bansal, A., & Kumar, S. (2020). Performance Analysis of various Information Platforms for recognizing the quality of Indian Roads. 2022 12th International Conference on Cloud Computing, Data Science &Amp; Engineering (Confluence), 63–76. DOI: 10.1109/confluence47617.2020.9057829SinghP.BansalA.KumarS.2020Performance Analysis of various Information Platforms for recognizing the quality of Indian Roads2022 12th International Conference on Cloud Computing, Data Science &Amp; Engineering (Confluence)637610.1109/confluence47617.2020.9057829Open DOISearch in Google Scholar
Singh, P., Kamal, A. E., Bansal, A., & Kumar, S. (2023). Road pothole detection from smartphone sensor data using improved LSTM. Multimedia Tools and Applications, 83(9), 26009–26030. DOI: 10.1007/s11042-023-16177-0SinghP.KamalA. E.BansalA.KumarS.2023Road pothole detection from smartphone sensor data using improved LSTMMultimedia Tools and Applications839260092603010.1007/s11042-023-16177-0Open DOISearch in Google Scholar
Tahir, H., & Jung, E. (2023). Comparative study on distributed lightweight deep learning models for road pothole detection. Sensors, 23(9), 4347. DOI: 10.3390/s23094347TahirH.JungE.2023Comparative study on distributed lightweight deep learning models for road pothole detectionSensors239434710.3390/s23094347Open DOISearch in Google Scholar
Tamagusko, T., & Ferreira, A. (2023). Optimizing Pothole Detection in Pavements: A Comparative Analysis of Deep Learning Models. Optimizing Pothole Detection in Pavements: A Comparative Analysis of Deep Learning Models, 57, 11. DOI: 10.3390/engproc2023036011TamaguskoT.FerreiraA.2023Optimizing Pothole Detection in Pavements: A Comparative Analysis of Deep Learning ModelsOptimizing Pothole Detection in Pavements: A Comparative Analysis of Deep Learning Models571110.3390/engproc2023036011Open DOISearch in Google Scholar
Tsai, Y., & Chatterjee, A. (2017). Pothole detection and classification using 3D technology and watershed method. Journal of Computing in Civil Engineering, 32(2). DOI: 10.1061/(asce)cp.1943-5487.0000726TsaiY.ChatterjeeA.2017Pothole detection and classification using 3D technology and watershed methodJournal of Computing in Civil Engineering32210.1061/(asce)cp.1943-5487.0000726Open DOISearch in Google Scholar
Vinodhini, K. A., & Sidhaarth, K. R. A. (2023). Pothole detection in bituminous road using CNN with transfer learning. Measurement Sensors, 31, 100940. DOI: 10.1016/j.measen.2023.100940VinodhiniK. A.SidhaarthK. R. A.2023Pothole detection in bituminous road using CNN with transfer learningMeasurement Sensors3110094010.1016/j.measen.2023.100940Open DOISearch in Google Scholar
Wang, H., Chen, C., Cheng, D., Lin, C., & Lo, C. (2015). A Real-Time pothole detection approach for intelligent transportation system. Mathematical Problems in Engineering, 2015, 1–7. DOI: 10.1155/2015/869627WangH.ChenC.ChengD.LinC.LoC.2015A Real-Time pothole detection approach for intelligent transportation systemMathematical Problems in Engineering20151710.1155/2015/869627Open DOISearch in Google Scholar
Wang, H., Zhu, J., & Feng, F. (2023). Elastic net twin support vector machine and its safe screening rules. Information Sciences, 635, 99–125. DOI: 10.1016/j.ins.2023.03.131WangH.ZhuJ.FengF.2023Elastic net twin support vector machine and its safe screening rulesInformation Sciences6359912510.1016/j.ins.2023.03.131Open DOISearch in Google Scholar
Wu, C., Wang, Z., Hu, S., Lepine, J., Na, X., Ainalis, D., & Stettler, M. (2020). An Automated Machine-Learning approach for road pothole detection using smartphone sensor data. Sensors, 20(19), 5564. DOI: 10.3390/s20195564WuC.WangZ.HuS.LepineJ.NaX.AinalisD.StettlerM.2020An Automated Machine-Learning approach for road pothole detection using smartphone sensor dataSensors2019556410.3390/s20195564Open DOISearch in Google Scholar
Xin, H., Ye, Y., Na, X., Hu, H., Wang, G., Wu, C., & Hu, S. (2023). Sustainable road pothole Detection: a crowdsourcing based Multi-Sensors fusion approach. Sustainability, 15(8), 6610. DOI: 10.3390/su15086610XinH.YeY.NaX.HuH.WangG.WuC.HuS.2023Sustainable road pothole Detection: a crowdsourcing based Multi-Sensors fusion approachSustainability158661010.3390/su15086610Open DOISearch in Google Scholar
Xu, Y., Sun, T., Ding, S., Yu, J., Kong, X., Ni, J., & Shi, S. (2023). VIDAR-Based Road-Surface-Pothole-Detection Method. Sensors, 23(17), 7468. DOI: 10.3390/s23177468XuY.SunT.DingS.YuJ.KongX.NiJ.ShiS.2023VIDAR-Based Road-Surface-Pothole-Detection MethodSensors2317746810.3390/s23177468Open DOISearch in Google Scholar
Xue, G., Zhu, H., Hu, Z., Yu, J., Zhu, Y., & Luo, Y. (2016). Pothole in the Dark: Perceiving Pothole Profiles with Participatory Urban Vehicles. IEEE Transactions on Mobile Computing, 16(5), 1408–1419. DOI: 10.1109/tmc.2016.2597839XueG.ZhuH.HuZ.YuJ.ZhuY.LuoY.2016Pothole in the Dark: Perceiving Pothole Profiles with Participatory Urban VehiclesIEEE Transactions on Mobile Computing1651408141910.1109/tmc.2016.2597839Open DOISearch in Google Scholar
Yu, G., Ma, J., & Xie, C. (2022). Hessian scatter regularized twin support vector machine for semi-supervised classification. Engineering Applications of Artificial Intelligence, 119, 105751. DOI: 10.1016/j.engappai.2022.105751YuG.MaJ.XieC.2022Hessian scatter regularized twin support vector machine for semi-supervised classificationEngineering Applications of Artificial Intelligence11910575110.1016/j.engappai.2022.105751Open DOISearch in Google Scholar
Zalama, E., Gómez-García-Bermejo, J., Medina, R., & Llamas, J. (2013). Road crack detection using visual features extracted by Gabor filters. Computer-Aided Civil and Infrastructure Engineering, 29(5), 342–358. DOI: 10.1111/mice.12042ZalamaE.Gómez-García-BermejoJ.MedinaR.LlamasJ.2013Road crack detection using visual features extracted by Gabor filtersComputer-Aided Civil and Infrastructure Engineering29534235810.1111/mice.12042Open DOISearch in Google Scholar
Zhang, A., Wang, K. C. P., & Ai, C. (2017). 3D shadow modeling for detection of descended patterns on 3D pavement surface. Journal of Computing in Civil Engineering, 31(4). DOI: 10.1061/(asce)cp.1943-5487.0000661ZhangA.WangK. C. P.AiC.20173D shadow modeling for detection of descended patterns on 3D pavement surfaceJournal of Computing in Civil Engineering31410.1061/(asce)cp.1943-5487.0000661Open DOISearch in Google Scholar
Zhang, L., Yang, F., Zhang, Y. D., & Zhu, Y. J. (2016). Road crack detection using deep convolutional neural network. 2022 IEEE International Conference on Image Processing (ICIP), 3708–3712. DOI: 10.1109/icip.2016.7533052ZhangL.YangF.ZhangY. D.ZhuY. J.2016Road crack detection using deep convolutional neural network2022 IEEE International Conference on Image Processing (ICIP)3708371210.1109/icip.2016.7533052Open DOISearch in Google Scholar
Zhao, M., Su, Y., Wang, J., Liu, X., Wang, K., Liu, Z., Liu, M., & Guo, Z. (2024). MED-YOLOv8s: a new real-time road crack, pothole, and patch detection model. Journal of Real-Time Image Processing, 21(2). DOI: 10.1007/s11554-023-01405-5ZhaoM.SuY.WangJ.LiuX.WangK.LiuZ.LiuM.GuoZ.2024MED-YOLOv8s: a new real-time road crack, pothole, and patch detection modelJournal of Real-Time Image Processing21210.1007/s11554-023-01405-5Open DOISearch in Google Scholar