Accesso libero

Deep CNN and twin support vector machine based model for detecting potholes in road network

,  e   
11 ago 2025
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Buza, E., Omanovic, S., & Huseinovic, A. (2013, October). Pothole Detection with Image Processing and Spectral Clustering. In proceedings of the 2nd International Conference on Information Technology and Computer Networks (Vol. 810, P. 4853). BuzaE. OmanovicS. HuseinovicA. 2013 October Pothole Detection with Image Processing and Spectral Clustering In proceedings of the 2nd International Conference on Information Technology and Computer Networks 810 4853 Search in Google Scholar

Cao, M., Tran, Q., Nguyen, N., & Chang, K. (2020). Survey on performance of deep learning models for detecting road damages using multiple dashcam image resources. Advanced Engineering Informatics, 46, 101182. DOI: 10.1016/j.aei.2020.101182 CaoM. TranQ. NguyenN. ChangK. 2020 Survey on performance of deep learning models for detecting road damages using multiple dashcam image resources Advanced Engineering Informatics 46 101182 10.1016/j.aei.2020.101182 Open DOISearch in Google Scholar

Chougule, S., & Barhatte, A. (2023). Smart Pothole Detection System using Deep Learning Algorithms. International Journal of Intelligent Transportation Systems Research, 21(3), 483–492. DOI: 10.1007/s13177-023-00363-3 ChouguleS. BarhatteA. 2023 Smart Pothole Detection System using Deep Learning Algorithms International Journal of Intelligent Transportation Systems Research 21 3 483 492 10.1007/s13177-023-00363-3 Open DOISearch in Google Scholar

Deepak, S., & Ameer, P. (2022b). Brain tumor categorization from imbalanced MRI dataset using weighted loss and deep feature fusion. Neurocomputing, 520, 94–102. DOI: 10.1016/j.neucom.2022.11.039 DeepakS. AmeerP. 2022b Brain tumor categorization from imbalanced MRI dataset using weighted loss and deep feature fusion Neurocomputing 520 94 102 10.1016/j.neucom.2022.11.039 Open DOISearch in Google Scholar

Dhiman, A., & Klette, R. (2019). Pothole detection using computer vision and learning. IEEE Transactions on Intelligent Transportation Systems, 21(8), 3536–3550. DOI: 10.1109/tits.2019.2931297 DhimanA. KletteR. 2019 Pothole detection using computer vision and learning IEEE Transactions on Intelligent Transportation Systems 21 8 3536 3550 10.1109/tits.2019.2931297 Open DOISearch in Google Scholar

Du, R., Qiu, G., Gao, K., Hu, L., & Liu, L. (2020). Abnormal road surface recognition based on smartphone acceleration sensor. Sensors, 20(2), 451. DOI: 10.3390/s20020451 DuR. QiuG. GaoK. HuL. LiuL. 2020 Abnormal road surface recognition based on smartphone acceleration sensor Sensors 20 2 451 10.3390/s20020451 Open DOISearch in Google Scholar

Eriksson, J., Girod, L., Hull, B., Newton, R., Madden, S., & Balakrishnan, H. (2008). The pothole patrol. DOI: 10.1145/1378600.1378605 ErikssonJ. GirodL. HullB. NewtonR. MaddenS. BalakrishnanH. 2008 The pothole patrol 10.1145/1378600.1378605 Open DOISearch in Google Scholar

Fan, R., Ai, X., & Dahnoun, N. (2018). Road surface 3D reconstruction based on dense subpixel disparity map estimation. IEEE Transactions on Image Processing, 27(6), 3025–3035. DOI: 10.1109/tip.2018.2808770 FanR. AiX. DahnounN. 2018 Road surface 3D reconstruction based on dense subpixel disparity map estimation IEEE Transactions on Image Processing 27 6 3025 3035 10.1109/tip.2018.2808770 Open DOISearch in Google Scholar

Gagliardi, V., Giammorcaro, B., Francesco, B., & Sansonetti, G. (2023). Deep neural networks for asphalt pavement distress detection and condition assessment. In Earth Resources and Environmental Remote Sensing/GIS Applications XIV, 35. DOI: 10.1117/12.2688512 GagliardiV. GiammorcaroB. FrancescoB. SansonettiG. 2023 Deep neural networks for asphalt pavement distress detection and condition assessment In Earth Resources and Environmental Remote Sensing/GIS Applications XIV 35 10.1117/12.2688512 Open DOISearch in Google Scholar

Gopalakrishnan, K., Khaitan, S. K., Choudhary, A., & Agrawal, A. (2017). Deep Convolutional Neural Networks with transfer learning for computer vision-based data-driven pavement distress detection. Construction and Building Materials, 157, 322–330. DOI: 10.1016/j.conbuildmat.2017.09.110 GopalakrishnanK. KhaitanS. K. ChoudharyA. AgrawalA. 2017 Deep Convolutional Neural Networks with transfer learning for computer vision-based data-driven pavement distress detection Construction and Building Materials 157 322 330 10.1016/j.conbuildmat.2017.09.110 Open DOISearch in Google Scholar

Heo, D., Choi, J., Kim, S., Tak, T., & Zhang, S. (2023). Image-Based pothole detection using Multi-Scale feature network and risk assessment. Electronics, 12(4), 826. DOI: 10.3390/electronics12040826 HeoD. ChoiJ. KimS. TakT. ZhangS. 2023 Image-Based pothole detection using Multi-Scale feature network and risk assessment Electronics 12 4 826 10.3390/electronics12040826 Open DOISearch in Google Scholar

Hoang, N., & Nguyen, Q. (2018). A novel method for asphalt pavement crack classification based on image processing and machine learning. Engineering With Computers, 35(2), 487–498. DOI: 10.1007/s00366-018-0611-9 HoangN. NguyenQ. 2018 A novel method for asphalt pavement crack classification based on image processing and machine learning Engineering With Computers 35 2 487 498 10.1007/s00366-018-0611-9 Open DOISearch in Google Scholar

Khater, H. A., & Gamel, S. A. (2023). Early diagnosis of respiratory system diseases (RSD) using deep convolutional neural networks. Journal of Ambient Intelligence and Humanized Computing, 14(9), 12273–12283. DOI: 10.1007/s12652-023-04659-w KhaterH. A. GamelS. A. 2023 Early diagnosis of respiratory system diseases (RSD) using deep convolutional neural networks Journal of Ambient Intelligence and Humanized Computing 14 9 12273 12283 10.1007/s12652-023-04659-w Open DOISearch in Google Scholar

Koch, C., & Brilakis, I. (2011). Pothole detection in asphalt pavement images. Advanced Engineering Informatics, 25(3), 507–515. DOI: 10.1016/j.aei.2011.01.002 KochC. BrilakisI. 2011 Pothole detection in asphalt pavement images Advanced Engineering Informatics 25 3 507 515 10.1016/j.aei.2011.01.002 Open DOISearch in Google Scholar

Laurent, J., Hébert, J. F., Lefebvre, D., & Savard, Y. (2012). Using 3D laser profiling sensors for the automated measurement of road surface conditions. In Rilem bookseries (pp. 157–167). DOI: 10.1007/978-94-007-4566-7_16 LaurentJ. HébertJ. F. LefebvreD. SavardY. 2012 Using 3D laser profiling sensors for the automated measurement of road surface conditions In Rilem bookseries 157 167 10.1007/978-94-007-4566-7_16 Open DOISearch in Google Scholar

Lee, S., Le, T. H. M., & Kim, Y. (2022). Prediction and detection of potholes in urban roads: Machine learning and deep learning based image segmentation approaches. Developments in the Built Environment, 13, 100109. DOI: 10.1016/j.dibe.2022.100109 LeeS. LeT. H. M. KimY. 2022 Prediction and detection of potholes in urban roads: Machine learning and deep learning based image segmentation approaches Developments in the Built Environment 13 100109 10.1016/j.dibe.2022.100109 Open DOISearch in Google Scholar

Li, S., Yuan, C., Liu, D., & Cai, H. (2016). Integrated processing of image and GPR data for automated pothole detection. Journal of Computing in Civil Engineering, 30(6). DOI: 10.1061/(asce)cp.1943-5487.0000582 LiS. YuanC. LiuD. CaiH. 2016 Integrated processing of image and GPR data for automated pothole detection Journal of Computing in Civil Engineering 30 6 10.1061/(asce)cp.1943-5487.0000582 Open DOISearch in Google Scholar

Moosaei, H., Ganaie, M., Hladík, M., & Tanveer, M. (2022). Inverse free reduced universum twin support vector machine for imbalanced data classification. Neural Networks, 157, 125–135. DOI: 10.1016/j.neunet.2022.10.003 MoosaeiH. GanaieM. HladíkM. TanveerM. 2022 Inverse free reduced universum twin support vector machine for imbalanced data classification Neural Networks 157 125 135 10.1016/j.neunet.2022.10.003 Open DOISearch in Google Scholar

Nogales, R. E., & Benalcázar, M. E. (2023). Hand Gesture Recognition Using Automatic Feature Extraction and Deep Learning Algorithms with Memory. Big Data and Cognitive Computing, 7(2), 102. DOI: 10.3390/bdcc7020102 NogalesR. E. BenalcázarM. E. 2023 Hand Gesture Recognition Using Automatic Feature Extraction and Deep Learning Algorithms with Memory Big Data and Cognitive Computing 7 2 102 10.3390/bdcc7020102 Open DOISearch in Google Scholar

Pan, Y., Zhang, X., Tian, J., Jin, X., Luo, L., & Yang, K. (2017). Mapping asphalt pavement aging and condition using multiple endmember spectral mixture analysis in Beijing, China. Journal of Applied Remote Sensing, 11(1), 016003. DOI: 10.1117/1.jrs.11.016003 PanY. ZhangX. TianJ. JinX. LuoL. YangK. 2017 Mapping asphalt pavement aging and condition using multiple endmember spectral mixture analysis in Beijing, China Journal of Applied Remote Sensing 11 1 016003 10.1117/1.jrs.11.016003 Open DOISearch in Google Scholar

Peralta-López, J., Morales-Viscaya, J., Lázaro-Mata, D., Villaseñor-Aguilar, M., Prado-Olivarez, J., Pérez-Pinal, F., Padilla-Medina, J., Martínez-Nolasco, J., & Barranco-Gutiérrez, A. (2023). Speed Bump and Pothole Detection Using Deep Neural Network with Images Captured through ZED Camera. Applied Sciences, 13(14), 8349. DOI: 10.3390/app13148349 Peralta-LópezJ. Morales-ViscayaJ. Lázaro-MataD. Villaseñor-AguilarM. Prado-OlivarezJ. Pérez-PinalF. Padilla-MedinaJ. Martínez-NolascoJ. Barranco-GutiérrezA. 2023 Speed Bump and Pothole Detection Using Deep Neural Network with Images Captured through ZED Camera Applied Sciences 13 14 8349 10.3390/app13148349 Open DOISearch in Google Scholar

Pereira, V., Tamura, S., Hayamizu, S., & Fukai, H. (2018). Pereira, V., Tamura, S., Hayamizu, S., & Fukai, H. (2018, July). A deep learning-based approach for road pothole detection in timor leste. In 2018 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI) (pp. 279–284). IEEE. In IEEE International Conference on Service Operations and Logistics, and Informatics. DOI: 10.1109/soli.2018.8476795 PereiraV. TamuraS. HayamizuS. FukaiH. 2018 Pereira, V., Tamura, S., Hayamizu, S., & Fukai, H. (2018, July). A deep learning-based approach for road pothole detection in timor leste In 2018 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI) 279 284 IEEE In IEEE International Conference on Service Operations and Logistics, and Informatics. 10.1109/soli.2018.8476795 Open DOISearch in Google Scholar

Satti, S. K., Rajareddy, G. N. V., Mishra, K., & Gandomi, A. H. (2024). Potholes and traffic signs detection by classifier with vision transformers. Scientific Reports, 14(1). DOI: 10.1038/s41598-024-52426-4 SattiS. K. RajareddyG. N. V. MishraK. GandomiA. H. 2024 Potholes and traffic signs detection by classifier with vision transformers Scientific Reports 14 1 10.1038/s41598-024-52426-4 Open DOISearch in Google Scholar

Singh, P., Bansal, A., & Kumar, S. (2020). Performance Analysis of various Information Platforms for recognizing the quality of Indian Roads. 2022 12th International Conference on Cloud Computing, Data Science &Amp; Engineering (Confluence), 63–76. DOI: 10.1109/confluence47617.2020.9057829 SinghP. BansalA. KumarS. 2020 Performance Analysis of various Information Platforms for recognizing the quality of Indian Roads 2022 12th International Conference on Cloud Computing, Data Science &Amp; Engineering (Confluence) 63 76 10.1109/confluence47617.2020.9057829 Open DOISearch in Google Scholar

Singh, P., Kamal, A. E., Bansal, A., & Kumar, S. (2023). Road pothole detection from smartphone sensor data using improved LSTM. Multimedia Tools and Applications, 83(9), 26009–26030. DOI: 10.1007/s11042-023-16177-0 SinghP. KamalA. E. BansalA. KumarS. 2023 Road pothole detection from smartphone sensor data using improved LSTM Multimedia Tools and Applications 83 9 26009 26030 10.1007/s11042-023-16177-0 Open DOISearch in Google Scholar

Tahir, H., & Jung, E. (2023). Comparative study on distributed lightweight deep learning models for road pothole detection. Sensors, 23(9), 4347. DOI: 10.3390/s23094347 TahirH. JungE. 2023 Comparative study on distributed lightweight deep learning models for road pothole detection Sensors 23 9 4347 10.3390/s23094347 Open DOISearch in Google Scholar

Tamagusko, T., & Ferreira, A. (2023). Optimizing Pothole Detection in Pavements: A Comparative Analysis of Deep Learning Models. Optimizing Pothole Detection in Pavements: A Comparative Analysis of Deep Learning Models, 57, 11. DOI: 10.3390/engproc2023036011 TamaguskoT. FerreiraA. 2023 Optimizing Pothole Detection in Pavements: A Comparative Analysis of Deep Learning Models Optimizing Pothole Detection in Pavements: A Comparative Analysis of Deep Learning Models 57 11 10.3390/engproc2023036011 Open DOISearch in Google Scholar

Tsai, Y., & Chatterjee, A. (2017). Pothole detection and classification using 3D technology and watershed method. Journal of Computing in Civil Engineering, 32(2). DOI: 10.1061/(asce)cp.1943-5487.0000726 TsaiY. ChatterjeeA. 2017 Pothole detection and classification using 3D technology and watershed method Journal of Computing in Civil Engineering 32 2 10.1061/(asce)cp.1943-5487.0000726 Open DOISearch in Google Scholar

Vinodhini, K. A., & Sidhaarth, K. R. A. (2023). Pothole detection in bituminous road using CNN with transfer learning. Measurement Sensors, 31, 100940. DOI: 10.1016/j.measen.2023.100940 VinodhiniK. A. SidhaarthK. R. A. 2023 Pothole detection in bituminous road using CNN with transfer learning Measurement Sensors 31 100940 10.1016/j.measen.2023.100940 Open DOISearch in Google Scholar

Wang, H., Chen, C., Cheng, D., Lin, C., & Lo, C. (2015). A Real-Time pothole detection approach for intelligent transportation system. Mathematical Problems in Engineering, 2015, 1–7. DOI: 10.1155/2015/869627 WangH. ChenC. ChengD. LinC. LoC. 2015 A Real-Time pothole detection approach for intelligent transportation system Mathematical Problems in Engineering 2015 1 7 10.1155/2015/869627 Open DOISearch in Google Scholar

Wang, H., Zhu, J., & Feng, F. (2023). Elastic net twin support vector machine and its safe screening rules. Information Sciences, 635, 99–125. DOI: 10.1016/j.ins.2023.03.131 WangH. ZhuJ. FengF. 2023 Elastic net twin support vector machine and its safe screening rules Information Sciences 635 99 125 10.1016/j.ins.2023.03.131 Open DOISearch in Google Scholar

Wu, C., Wang, Z., Hu, S., Lepine, J., Na, X., Ainalis, D., & Stettler, M. (2020). An Automated Machine-Learning approach for road pothole detection using smartphone sensor data. Sensors, 20(19), 5564. DOI: 10.3390/s20195564 WuC. WangZ. HuS. LepineJ. NaX. AinalisD. StettlerM. 2020 An Automated Machine-Learning approach for road pothole detection using smartphone sensor data Sensors 20 19 5564 10.3390/s20195564 Open DOISearch in Google Scholar

Xin, H., Ye, Y., Na, X., Hu, H., Wang, G., Wu, C., & Hu, S. (2023). Sustainable road pothole Detection: a crowdsourcing based Multi-Sensors fusion approach. Sustainability, 15(8), 6610. DOI: 10.3390/su15086610 XinH. YeY. NaX. HuH. WangG. WuC. HuS. 2023 Sustainable road pothole Detection: a crowdsourcing based Multi-Sensors fusion approach Sustainability 15 8 6610 10.3390/su15086610 Open DOISearch in Google Scholar

Xu, Y., Sun, T., Ding, S., Yu, J., Kong, X., Ni, J., & Shi, S. (2023). VIDAR-Based Road-Surface-Pothole-Detection Method. Sensors, 23(17), 7468. DOI: 10.3390/s23177468 XuY. SunT. DingS. YuJ. KongX. NiJ. ShiS. 2023 VIDAR-Based Road-Surface-Pothole-Detection Method Sensors 23 17 7468 10.3390/s23177468 Open DOISearch in Google Scholar

Xue, G., Zhu, H., Hu, Z., Yu, J., Zhu, Y., & Luo, Y. (2016). Pothole in the Dark: Perceiving Pothole Profiles with Participatory Urban Vehicles. IEEE Transactions on Mobile Computing, 16(5), 1408–1419. DOI: 10.1109/tmc.2016.2597839 XueG. ZhuH. HuZ. YuJ. ZhuY. LuoY. 2016 Pothole in the Dark: Perceiving Pothole Profiles with Participatory Urban Vehicles IEEE Transactions on Mobile Computing 16 5 1408 1419 10.1109/tmc.2016.2597839 Open DOISearch in Google Scholar

Yu, G., Ma, J., & Xie, C. (2022). Hessian scatter regularized twin support vector machine for semi-supervised classification. Engineering Applications of Artificial Intelligence, 119, 105751. DOI: 10.1016/j.engappai.2022.105751 YuG. MaJ. XieC. 2022 Hessian scatter regularized twin support vector machine for semi-supervised classification Engineering Applications of Artificial Intelligence 119 105751 10.1016/j.engappai.2022.105751 Open DOISearch in Google Scholar

Zalama, E., Gómez-García-Bermejo, J., Medina, R., & Llamas, J. (2013). Road crack detection using visual features extracted by Gabor filters. Computer-Aided Civil and Infrastructure Engineering, 29(5), 342–358. DOI: 10.1111/mice.12042 ZalamaE. Gómez-García-BermejoJ. MedinaR. LlamasJ. 2013 Road crack detection using visual features extracted by Gabor filters Computer-Aided Civil and Infrastructure Engineering 29 5 342 358 10.1111/mice.12042 Open DOISearch in Google Scholar

Zhang, A., Wang, K. C. P., & Ai, C. (2017). 3D shadow modeling for detection of descended patterns on 3D pavement surface. Journal of Computing in Civil Engineering, 31(4). DOI: 10.1061/(asce)cp.1943-5487.0000661 ZhangA. WangK. C. P. AiC. 2017 3D shadow modeling for detection of descended patterns on 3D pavement surface Journal of Computing in Civil Engineering 31 4 10.1061/(asce)cp.1943-5487.0000661 Open DOISearch in Google Scholar

Zhang, L., Yang, F., Zhang, Y. D., & Zhu, Y. J. (2016). Road crack detection using deep convolutional neural network. 2022 IEEE International Conference on Image Processing (ICIP), 3708–3712. DOI: 10.1109/icip.2016.7533052 ZhangL. YangF. ZhangY. D. ZhuY. J. 2016 Road crack detection using deep convolutional neural network 2022 IEEE International Conference on Image Processing (ICIP) 3708 3712 10.1109/icip.2016.7533052 Open DOISearch in Google Scholar

Zhao, M., Su, Y., Wang, J., Liu, X., Wang, K., Liu, Z., Liu, M., & Guo, Z. (2024). MED-YOLOv8s: a new real-time road crack, pothole, and patch detection model. Journal of Real-Time Image Processing, 21(2). DOI: 10.1007/s11554-023-01405-5 ZhaoM. SuY. WangJ. LiuX. WangK. LiuZ. LiuM. GuoZ. 2024 MED-YOLOv8s: a new real-time road crack, pothole, and patch detection model Journal of Real-Time Image Processing 21 2 10.1007/s11554-023-01405-5 Open DOISearch in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
1 volte all'anno
Argomenti della rivista:
Ingegneria, Introduzioni e rassegna, Ingegneria, altro