Research on gas concentration identification based on sparrow search algorithm optimization SVR
, e
26 lug 2025
INFORMAZIONI SU QUESTO ARTICOLO
Categoria dell'articolo: Research Article
Pubblicato online: 26 lug 2025
Ricevuto: 13 ott 2024
DOI: https://doi.org/10.2478/ijssis-2025-0038
Parole chiave
© 2025 Yuanman Zhang et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Figure 1:

Figure 2:

Figure 3:

Initial parameter table
Maximum iterations | 200 |
Population size | 100 |
Optimization parameter number | 2 |
Upper limit of optimization parameter | 2−10 |
Lower limit of optimization parameter | 210 |
Cross-check the number of folds | 5 |
Model parameter settings
SVR | C | / | 10 |
g | 0.5 | ||
SSA-SVR | Alarm value | [0.5, 1] | 0.8 |
Safety threshold | [0, 1] | 0.2 | |
TSSA-SVR | Alarm value | [0.5, 1] | 0.8 |
Safety threshold | [0, 1] | 0.2 |
Quantitative identification results of mixed gases
SVR | 2.626 | 2.336 | 0.095 | 81.80 |
SSA-SVR | 1.982 | 1.485 | 0.375 | 87.43 |
GA-SVR | 1.892 | 1.367 | 0.482 | 89.67 |
PSO-SVR | 1.765 | 1.220 | 0.512 | 90.36 |
TSSA-SVR | 0.286 | 0.425 | 0.896 | 94.47 |