Accesso libero

3D print orientation optimization and comparative analysis of NSGA-II versus NSGA-II with Q-learning

 e   
01 lug 2025
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

This study optimizes 3D print orientation to minimize support material, printing time, and surface roughness using non-dominated sorting genetic algorithm II (NSGA-II). Traditional NSGA-II can stagnate due to static parameters; thus, integration with Q-learning dynamically adjusts these parameters based on rewards. Q-learning, a variant of reinforcement learning (RL), initially promotes population diversity for broad exploration and later exploits optimal solutions near the Pareto front. Results show that the hybrid approach significantly enhances Pareto-front quality, improving efficiency by reducing support material (2.1%), printing time (3.8%), and surface roughness (1.9%). Validation confirms practical applicability of generated solutions for fused deposition modeling (FDM).

Lingua:
Inglese
Frequenza di pubblicazione:
1 volte all'anno
Argomenti della rivista:
Ingegneria, Introduzioni e rassegna, Ingegneria, altro