Improving mobile security: A study on android malware detection using LOF
e
18 set 2024
INFORMAZIONI SU QUESTO ARTICOLO
Categoria dell'articolo: Original Study
Pubblicato online: 18 set 2024
Pagine: 241 - 252
Ricevuto: 05 nov 2023
Accettato: 01 mag 2024
DOI: https://doi.org/10.2478/ijmce-2025-0018
Parole chiave
© 2025 Luay Albtosh et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Android malware detection performance metrics_
Method | Accuracy | Precision | Recall | FPR |
---|---|---|---|---|
LOF | 0.9202 | 0.8495 | 0.367 | 0.2367 |
Isolation Forest | 0.8801 | 0.8123 | 0.398 | 0.2856 |
Decision Tree | 0.8653 | 0.7975 | 0.382 | 0.2941 |
KNN | 0.9012 | 0.8256 | 0.405 | 0.2712 |
Comparison of android malware detection methods (Hypothetical results)_
Metric | LOF | Isolation Forest | Decision Tree | KNN |
---|---|---|---|---|
Accuracy | 0.9202 | 0.8801 | 0.8653 | 0.9012 |
F1 Score | 0.8495 | 0.8123 | 0.7975 | 0.8256 |
FPR | 0.3670 | 0.4200 | 0.4350 | 0.3980 |
Precision | 0.8632 | 0.7956 | 0.7834 | 0.8157 |
Recall | 0.8371 | 0.8324 | 0.8102 | 0.8452 |
AUC | 0.9315 | 0.8997 | 0.8836 | 0.9154 |
MCC | 0.7261 | 0.6782 | 0.6579 | 0.7064 |
TNR | 0.6320 | 0.5770 | 0.5910 | 0.6120 |
Algorithm Description: Malware Detection using Local Outlier Factor
1: | |
2: | |
3: | |
4: | |
5: | |
6: | List of Android applications labeled as benign or malware. |
7: | |
8: | Compute the |
9: | Compute the reachability distance for each application in |
10: | Compute the local reachability density for each application. |
11: | Compute the LOF score for each application. |
12: | |
13: | |
14: | |
15: | |
16: | Compute the LOF score for |
17: | |
18: | Label |
19: | |
20: | Label |
21: | |
22: | |
23: | |
24: |