This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Aaditya, R., Nicol'as, T. & Marco, C. (2017), On wasserstein two-sample testing and related families of nonparametric tests, Entropy, 19(2), 47. doi: 10.3390/e19020047AadityaR.Nicol'asT.MarcoC.2017On wasserstein two-sample testing and related families of nonparametric testsEntropy1924710.3390/e19020047Open DOISearch in Google Scholar
Alagappan, M. (2012), From 5 to 13: Redefining the positions in basketball, in ‘2012 MIT Sloan Sports Analytics Conference.’AlagappanM.2012From 5 to 13: Redefining the positions in basketball, in ‘2012 MIT Sloan Sports Analytics Conference.’Search in Google Scholar
Arjovsky, M., Chintala, S. & Bottou, L. (2017), Wasserstein generative adversarial networks, in D. Precup & Y. W. Teh, eds, Proceedings of the 34th International Conference on Machine Learning, Proceedings of Machine Learning Research, PMLR, 70, 214–223. doi: 10.5555/3305381.3305404ArjovskyM.ChintalaS.BottouL.2017Wasserstein generative adversarial networksinPrecupD.TehY. W.eds,Proceedings of the 34th International Conference on Machine Learning, Proceedings of Machine Learning Research, PMLR, 7021422310.5555/3305381.3305404Open DOISearch in Google Scholar
Barron, B., Sitaraman, S., N. & Arias, A., T. (2024), Analyzing NBA player positions and interactions with density-functional fluctuation theory, in ‘18th annual MIT Sloan Sports Analytics Conference’.BarronB.SitaramanS., N.AriasA., T.2024Analyzing NBA player positions and interactions with density-functional fluctuation theoryin‘18th annual MIT Sloan Sports Analytics Conference’Search in Google Scholar
Bianchi, F., Facchinetti, T. & Zuccolotto, P. (2017), Role revolution: towards a new meaning of positions in basketball, Electronic Journal of Applied Statistical Analysis, 10(3), 712–734.BianchiF.FacchinettiT.ZuccolottoP.2017Role revolution: towards a new meaning of positions in basketballElectronic Journal of Applied Statistical Analysis103712734Search in Google Scholar
Bunker, R., Le Duy, V. N., Tabei, Y., Takeuchi, I. & Fujii, K. (2023), Multi-agent statistical discriminative sub-trajectory mining and an application to nba basketball, arXiv preprint arXiv:2311.16564.BunkerR.Le DuyV. N.TabeiY.TakeuchiI.FujiiK.2023Multi-agent statistical discriminative sub-trajectory mining and an application to nba basketballarXiv preprint arXiv:2311.16564.Search in Google Scholar
Chen, R., Zhang, M. & Xu, X. (2023), Modeling the influence of basketball players’ offense roles on team performance, Frontiers in Psychology, 14. doi: 10.3389/fpsyg.2023.1256796ChenR.ZhangM.XuX.2023Modeling the influence of basketball players’ offense roles on team performanceFrontiers in Psychology1410.3389/fpsyg.2023.1256796Open DOISearch in Google Scholar
Fan, Y., Guanyu, H. & Shen, W. (2023), Analysis of professional basketball field goal attempts via a bayesian matrix clustering approach, Journal of Computational and Graphical Statistics, 32(1), 49–60. doi: 10.1080/10618600.2022.2085727FanY.GuanyuH.ShenW.2023Analysis of professional basketball field goal attempts via a bayesian matrix clustering approachJournal of Computational and Graphical Statistics321496010.1080/10618600.2022.2085727Open DOISearch in Google Scholar
Fujii, K., Inaba, Y. & Kawahara, Y. (2017), Koopman spectral kernels for comparing complex dynamics: Application to multiagent sport plays, in ‘European Conference on Machine Learning and Knowledge Discovery in Databases (ECML-PKDD’17)’, Springer, 127139. doi: 10.1007/978-3-319-71273-4_11FujiiK.InabaY.KawaharaY.2017Koopman spectral kernels for comparing complex dynamics: Application to multiagent sport playsin‘European Conference on Machine Learning and Knowledge Discovery in Databases (ECML-PKDD’17)’Springer12713910.1007/978-3-319-71273-4_11Open DOISearch in Google Scholar
Fujii, K., Kawasaki, T., Inaba, Y. & Kawahara, Y. (2018), Prediction and classification in equation-free collective motion dynamics, PLoS Computational Biology, 14(11): e1006545.FujiiK.KawasakiT.InabaY.KawaharaY.2018Prediction and classification in equation-free collective motion dynamicsPLoS Computational Biology1411e1006545Search in Google Scholar
Fujii, K., Takeishi, N., Hojo, M., Inaba, Y., and Kawahara, Y. (2020). Physically-interpretable classification of network dynamics for complex collective motions. Scientific Reports, 10(3005).FujiiK.TakeishiN.HojoM.InabaY.KawaharaY.2020Physically-interpretable classification of network dynamics for complex collective motionsScientific Reports103005Search in Google Scholar
Gower, J. C. (1971), A general coefficient of similarity and some of its properties, Biometrics, 27(4), 857–871. doi: 10.2307/2528823GowerJ. C.1971A general coefficient of similarity and some of its propertiesBiometrics27485787110.2307/2528823Open DOISearch in Google Scholar
Hojo, M., Fujii, K., Inaba, Y., Motoyasu, Y. & Kawahara, Y. (2018), Automatically recognizing strategic cooperative behaviors in various situations of a team sport, PLoS One, 13(12): e0209247.HojoM.FujiiK.InabaY.MotoyasuY.KawaharaY.2018Automatically recognizing strategic cooperative behaviors in various situations of a team sportPLoS One1312e0209247Search in Google Scholar
Hojo, M., Fujii, K. & Kawahara, Y. (2019), Analysis of factors predicting who obtains a ball in basketball rebounding situations, International Journal of Performance Analysis in Sport, 1–14.HojoM.FujiiK.KawaharaY.2019Analysis of factors predicting who obtains a ball in basketball rebounding situationsInternational Journal of Performance Analysis in Sport114Search in Google Scholar
Hu, G., Yang, H.-C. & Xue, Y. (2020), Bayesian group learning for shot selection of professional basketball players, Stat, 10(1), e324, doi: 10.1002/sta4.324.HuG.YangH.-C.XueY.2020Bayesian group learning for shot selection of professional basketball playersStat101e32410.1002/sta4.324Open DOISearch in Google Scholar
Hua, G. & Su, C. (2023), Estimating positional plus-minus in the nba, in ‘17th annual MIT Sloan Sports Analytics Conference.’HuaG.SuC.2023Estimating positional plus-minus in the nbain‘17th annual MIT Sloan Sports Analytics Conference.’Search in Google Scholar
Hvattum, Magnus, L. (2019), A comprehensive review of plus-minus ratings for evaluating individual players in team sports, International Journal of Computer Science in Sport, 18(1), 1–23.HvattumMagnus L.2019A comprehensive review of plus-minus ratings for evaluating individual players in team sportsInternational Journal of Computer Science in Sport181123Search in Google Scholar
Ishida, A., Takayanagi, M., Hoshina, I. & Iwayama, K. (2023), Bayesian credible possession based player performance evaluation in basketball, Keisankitoukeigaku [Journal of the Japanese Society of Computational Statistics], 36(2), 99–126.IshidaA.TakayanagiM.HoshinaI.IwayamaK.2023Bayesian credible possession based player performance evaluation in basketballKeisankitoukeigaku [Journal of the Japanese Society of Computational Statistics]36299126Search in Google Scholar
Jiao, J., Hu, G. & Yan, J. (2021), A bayesian marked spatial point processes model for basketball shot chart, Journal of Quantitative Analysis in Sports, 17(2), 77–90. doi: 10.1515/jqas-2019-0106JiaoJ.HuG.YanJ.2021A bayesian marked spatial point processes model for basketball shot chartJournal of Quantitative Analysis in Sports172779010.1515/jqas-2019-0106Open DOISearch in Google Scholar
Kalman, S. & Bosch, J. (2020), NBA lineup analysis on clustered player tendencies: A new approach to the positions of basketball & modeling lineup efficiency of soft lineup aggregates, in ‘14th annual MIT Sloan Sports Analytics Conference’.KalmanS.BoschJ.2020NBA lineup analysis on clustered player tendencies: A new approach to the positions of basketball & modeling lineup efficiency of soft lineup aggregatesin‘14th annual MIT Sloan Sports Analytics Conference’Search in Google Scholar
Kanda, S., Takeuchi, K., Fujii, K. & Tabei, Y. (2020), Succinct trit-array trie for scalable trajectory similarity search, Proceedings of the 28th International Conference on Advances in Geographic Information Systems, 518–529.KandaS.TakeuchiK.FujiiK.TabeiY.2020Succinct trit-array trie for scalable trajectory similarity searchProceedings of the 28th International Conference on Advances in Geographic Information Systems518529Search in Google Scholar
Kempe, M., Grunz, A. & Daniel, M. (2014), Detecting tactical patterns in basketball: Comparison of merge self-organising maps and dynamic controlled neural networks, European Journal of Sport Science, 15(4), 249–255.KempeM.GrunzA.DanielM.2014Detecting tactical patterns in basketball: Comparison of merge self-organising maps and dynamic controlled neural networksEuropean Journal of Sport Science154249255Search in Google Scholar
Lutz, D. (2012), A cluster analysis of nba players, in ‘2012 MIT Sloan Sports Analytics Conference.’LutzD.2012A cluster analysis of nba playersin‘2012 MIT Sloan Sports Analytics Conference.’Search in Google Scholar
McInnes, L., Healy, J., Saul, N. & Großberger, L. (2018), Umap: Uniform manifold approximation and projection, Journal of Open Source Software, 3(29), 861. doi: 10.21105/joss.00861McInnesL.HealyJ.SaulN.GroßbergerL.2018Umap: Uniform manifold approximation and projectionJournal of Open Source Software32986110.21105/joss.00861Open DOISearch in Google Scholar
McIntyre, A., Brooks, J., Guttag, J. & Wiens, J. (2016), Recognizing and analyzing ball screen defense in the NBA, Proceedings of the MIT Sloan Sports Analytics Conference, 11–12.McIntyreA.BrooksJ.GuttagJ.WiensJ.2016Recognizing and analyzing ball screen defense in the NBAProceedings of the MIT Sloan Sports Analytics Conference1112Search in Google Scholar
McQueen, A., Wiens, J. & Guttag, J. (2014), Automatically recognizing on-ball screens, in Proceedings of the MIT Sloan Sports Analytics Conference.McQueenA.WiensJ.GuttagJ.2014Automatically recognizing on-ball screensinProceedings of the MIT Sloan Sports Analytics ConferenceSearch in Google Scholar
Miller, A., Bornn, L., Adams, R. & Goldsberry, K. (2014), Factorized point process intensities: A spatial analysis of professional basketball, in E. P. Xing & T. Jebara, eds, Proceedings of the 31st International Conference on Machine Learning, Proceedings of Machine Learning Research, PMLR, 32, 235–243. doi: 10.5555/3044805.3044833MillerA.BornnL.AdamsR.GoldsberryK.2014Factorized point process intensities: A spatial analysis of professional basketballinXingE. P.JebaraT.eds,Proceedings of the 31st International Conference on Machine Learning, Proceedings of Machine Learning Research, PMLR, 3223524310.5555/3044805.3044833Open DOISearch in Google Scholar
Miller, A. C. & Bornn, L. (2017), Possession sketches: Mapping NBA strategies, in Proceedings of the MIT Sloan Sports Analytics Conference.MillerA. C.BornnL.2017Possession sketches: Mapping NBA strategiesinProceedings of the MIT Sloan Sports Analytics ConferenceSearch in Google Scholar
Muniz, M. & Flamand, T. (2022), A weighted network clustering approach in the nba, Journal of Sports Analytics, 8(4), 1–25.MunizM.FlamandT.2022A weighted network clustering approach in the nbaJournal of Sports Analytics84125Search in Google Scholar
Murtagh, F. & Legendre, P. (2011), Wards hierarchical clustering method: Clustering criterion and agglomerative algorithm.MurtaghF.LegendreP.2011Wards hierarchical clustering method: Clustering criterion and agglomerative algorithmSearch in Google Scholar
Nistala, A. (2018), Using deep learning to understand patterns of player movement in basketball, PhD thesis, Massachusetts Institute of Technology.NistalaA.2018Using deep learning to understand patterns of player movement in basketballPhD thesis,Massachusetts Institute of TechnologySearch in Google Scholar
Papalexakis, E. & Pelechrinis, K. (2018), thoops: A multi-aspect analytical framework for spatiotemporal basketball data, Proceedings of the 27th ACM International Conference on Information and Knowledge Management, 2223–2232.PapalexakisE.PelechrinisK.2018thoops: A multi-aspect analytical framework for spatiotemporal basketball dataProceedings of the 27th ACM International Conference on Information and Knowledge Management22232232Search in Google Scholar
Peruše, M., Kristan, M., Kovačič, S., Vučkovič, G. & PeGs, J. (2009), A trajectory-based analysis of coordinated team activity in a basketball game, Computer Vision and Image Understanding, 113(5), 612–621.PerušeM.KristanM.KovačičS.VučkovičG.PeGsJ.2009A trajectory-based analysis of coordinated team activity in a basketball gameComputer Vision and Image Understanding1135612621Search in Google Scholar
Sha, L., Lucey, P., Yue, Y., Carr, P., Rohlf, C. & Matthews, I. (2016), Chalkboarding: A new spatiotemporal query paradigm for sports play retrieval, in ‘International Conference on Intelligent User Interfaces’, 336–347.ShaL.LuceyP.YueY.CarrP.RohlfC.MatthewsI.2016Chalkboarding: A new spatiotemporal query paradigm for sports play retrievalin‘International Conference on Intelligent User Interfaces’336347Search in Google Scholar
van der Maaten, L. & Hinton, G. (2008), Visualizing data using t-sne, Journal of Machine Learning Research, 9(86), 2579–2605.van der MaatenL.HintonG.2008Visualizing data using t-sneJournal of Machine Learning Research98625792605Search in Google Scholar
Wang, K.-C. & Zemel, R. (2016), Classifying nba offensive plays using neural networks, Proceedings of the MIT Sloan Sports Analytics Conference.WangK.-C.ZemelR.2016Classifying nba offensive plays using neural networksProceedings of the MIT Sloan Sports Analytics ConferenceSearch in Google Scholar
Wang, X., Han, B., Zhang, S., Zhang, L., Lorenzo Calvo, A. & Gomez, M.- (2022), The differences in the performance profiles between native and foreign players in the chinese basketball association, Frontiers in Psychology, 12. doi: 10.3389/fpsyg.2021.788498WangX.HanB.ZhangS.ZhangL.Lorenzo CalvoA.GomezM.-2022The differences in the performance profiles between native and foreign players in the chinese basketball associationFrontiers in Psychology1210.3389/fpsyg.2021.788498Open DOISearch in Google Scholar
Whitehead, T. (2018), Nylon calculus: Defining 23 offensive roles using the NBAs play-type data. Retrieved November 22, 2024, from https://fansided.com/2018/10/15/nylon-calculus-defining-23-offensive-roles-nba-play-type-dataWhiteheadT.2018Nylon calculus: Defining 23 offensive roles using the NBAs play-type dataRetrieved November 22, 2024, from https://fansided.com/2018/10/15/nylon-calculus-defining-23-offensive-roles-nba-play-type-dataSearch in Google Scholar
Yanai, C., Solomon, A., Katz, G., Shapira, B. & Rokach, L. (2022), Q-ball: Modeling basketball games using deep reinforcement learning, Proceedings of the AAAI Conference on Artificial Intelligence, 36, 8806–8813.YanaiC.SolomonA.KatzG.ShapiraB.RokachL.2022Q-ball: Modeling basketball games using deep reinforcement learningProceedings of the AAAI Conference on Artificial Intelligence3688068813Search in Google Scholar
Yeung, C., Ide, K. & Fujii, K. (2024), Autosoccerpose: Automated 3d posture analysis of soccer shot movements, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 3214–3224.YeungC.IdeK.FujiiK.2024Autosoccerpose: Automated 3d posture analysis of soccer shot movementsProceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops32143224Search in Google Scholar
Zhang, L., Lu, F., Liu, A., Guo, P. & Liu, C. (2016), Application of k-means clustering algorithm for classification of nba guards, International Journal of Science and Engineering Applications, 5(1), 1–6.ZhangL.LuF.LiuA.GuoP.LiuC.2016Application of k-means clustering algorithm for classification of nba guardsInternational Journal of Science and Engineering Applications5116Search in Google Scholar
Zhang, Z., Takeda, K. & Fujii, K. (2022), Cooperative play classification in team sports via semisupervised learning, International Journal of Computer Science in Sport, 21(1), 111–121.ZhangZ.TakedaK.FujiiK.2022Cooperative play classification in team sports via semisupervised learningInternational Journal of Computer Science in Sport211111121Search in Google Scholar