Accesso libero

Exploring Premier League Clubs Performance and Home-Away Differences Based on Passing Network Analysis

 e   
18 ott 2024
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Antequera, D. R., Garrido, D., Echegoyen, I., López del Campo, R., Resta Serra, R., & Buldú, J. M. (2020). Asymmetries in Football: The Pass Goal Paradox. Symmetry, 12(6), 1052. Search in Google Scholar

Araya, J. A., & Larkin, P. (2013). Key performance variables between the top 10 and bottom 10 teams in the English Premier League 2012/13 season. Human Movement, Health and Coach Education (HMHCE), 2, 17-29. Search in Google Scholar

Bradley, P. S., Lago-Peñas, C., Rey, E., & Sampaio, J. (2014). The influence of situational variables on ball possession in the English Premier League. Journal of Sports Sciences, 32(20), 1867-1873. Search in Google Scholar

Buraimo, B., Paramio, J. L., & Campos, C. (2010). The impact of televised football on stadium attendances in English and Spanish league football. Soccer & Society, 11(4), 461-474. Search in Google Scholar

Buldú, J. M., Busquets, J., Martínez, J. H., Herrera-Diestra, J. L., Echegoyen, I., Galeano, J., & Luque, J. (2018). Using network science to analyse football passing networks: Dynamics, space, time, and the multilayer nature of the game. Frontiers in psychology, 9, 1900. Search in Google Scholar

Borgatti, S. P., Everett, M. G., & Johnson, J. C. (2018). Analyzing social networks. Sage. Search in Google Scholar

Carmichael, F., Thomas, D., & Ward, R. (2001). Production and efficiency in association football. Journal of sports Economics, 2(3), 228-243. Search in Google Scholar

Carmichael, F., Thomas, D., & Ward, R. (2000). Team performance: the case of English premiership football. Managerial and decision Economics, 21(1), 31-45. Search in Google Scholar

Csárdi G, Nepusz T, Traag V, Horvát Sz, Zanini F, Noom D, Müller K (2024). _igraph: Network Analysis and Visualization in R_. doi:10.5281/zenodo.7682609 Search in Google Scholar

Cohen, J. (2013). Statistical power analysis for the behavioral sciences. Academic press.532. Search in Google Scholar

Courneya, K. S., & Carron, A. V. (1992). The home advantage in sport competitions: a literature review. Journal of Sport & Exercise Psychology, 14(1). Search in Google Scholar

Castellano, J., & Echeazarra, I. (2019). Network-based centrality measures and physical demands in football regarding player position: Is there a connection? A preliminary study. Journal of Sports Sciences, 37(23), 2631-2638. Search in Google Scholar

Clemente, F. M., Martins, F. M., & Mendes, R. (2014). Applying Networks and graph theory to match analysis: identifying the general properties of a graph. In VIII Congreso Internacional de la Asociación Española de Ciencias del Deporte (Vol. 2, pp. 587-590). Search in Google Scholar

Clemente, F. M., Martins, F. M. L., Couceiro, M. S., Mendes, R. S., & Figueiredo, A. J. (2014). A network approach to characterize the teammates interactions on football: A single match analysis. Cuadernos de Psicología del Deporte, 14(3), 141-148. Search in Google Scholar

Clemente, F. M., Martins, F. M. L., Kalamaras, D., Wong, P. D., & Mendes, R. S. (2015). General network analysis of national soccer teams in FIFA World Cup 2014. International Journal of Performance Analysis in Sport, 15(1), 80-96. Search in Google Scholar

Destefanis, S., Addesa, F., & Rossi, G. (2022). The impact of COVID-19 on home advantage: a conditional order-m analysis of football clubs’ efficiency in the top-5 European leagues. Applied Economics, 54(58), 6639-6655. Search in Google Scholar

Gama, J., Dias, G., Couceiro, M., Passos, P., Davids, K., & Ribeiro, J. (2016). An ecological dynamics rationale to explain home advantage in professional football. International Journal of Modern Physics C, 27(09), 1650102. Search in Google Scholar

Grund, T. U. (2012). Network structure and team performance: The case of English Premier League soccer teams. Social Networks, 34(4), 682-690. Search in Google Scholar

Grund, T. U. (2016). The relational value of network experience in teams: Evidence from the English Premier League. American Behavioral Scientist, 60(10), 1260-1280. Search in Google Scholar

Santana, H. A., Bettega, O. B., & Dellagrana, R. (2021). An analysis of Bundesliga matches before and after social distancing by COVID-19. Science and Medicine in Football, 5(sup1), 17-21. Search in Google Scholar

Jamieson, J. P. (2010). The home field advantage in athletics: A meta-analysis. Journal of Applied Social Psychology, 40(7), 1819-1848. Search in Google Scholar

Jones, P. D., James, N., & Mellalieu, S. D. (2004). Possession as a performance indicator in soccer. International Journal of Performance Analysis in Sport, 4(1), 98-102. Search in Google Scholar

Kubayi, A., & Larkin, P. (2020). Technical performance of soccer teams according to match outcome at the 2019 FIFA Women’s World Cup. International Journal of Performance Analysis in Sport, 20(5), 908-916. Search in Google Scholar

Korte, F., Link, D., Groll, J., & Lames, M. (2019). Play-by-play network analysis in football. Frontiers in psychology, 10, 1738. Search in Google Scholar

Lago-Ballesteros, J., & Lago-Peñas, C. (2010). Performance in team sports: Identifying the keys to success in soccer. Journal of Human kinetics, 25(2010), 85-91. Search in Google Scholar

Lago-Peñas, C., & Lago-Ballesteros, J. (2011). Game location and team quality effects on performance profiles in professional soccer. Journal of sports science & medicine, 10(3), 465. Search in Google Scholar

Lepschy, H., Wäsche, H., & Woll, A. (2020). Success factors in football: an analysis of the German Bundesliga. International Journal of Performance Analysis in Sport, 20(2), 150-164. Search in Google Scholar

Legaz-Arrese, A., Moliner-Urdiales, D., & Munguía-Izquierdo, D. (2013). Home advantage and sports performance: evidence, causes and psychological implications. Universitas Psychologica, 12(3), 933-943. Search in Google Scholar

Maimone, V. M., & Yasseri, T. (2021). Football is becoming more predictable; network analysis of 88 thousand matches in 11 major leagues. Royal Society Open Science, 8(12), 210617. Search in Google Scholar

Mangiafico, S.S. 2016. Summary and Analysis of Extension Program Evaluation in R, version 1.20.05,revised2023.rcompanion.org/handbook/.(Pdfversion:rcompanion.org/docume nts/RHandbookProgramEvaluation.pdf.) Search in Google Scholar

Moore, J. C., & Brylinsky, J. (1995). Facility familiarity and the home advantage. Journal of Sport Behavior, 18(4), 302. Search in Google Scholar

Neave, N., & Wolfson, S. (2003). Testosterone, territoriality, and the ‘home advantage’. Physiology & behavior, 78(2), 269-275. Search in Google Scholar

Oberstone, J. (2009). Differentiating the top English premier league football clubs from the rest of the pack: Identifying the keys to success. Journal of Quantitative Analysis in Sports, 5(3). Search in Google Scholar

Passos, P., Davids, K., Araújo, D., Paz, N., Minguéns, J., & Mendes, J. (2011). Networks as a novel tool for studying team ball sports as complex social systems. Journal of Science and Medicine in Sport, 14(2), 170-176. Search in Google Scholar

Passos, P., Araújo, D., & Volossovitch, A. (2017). Performance analysis in team sports. London: Routledge, Taylor & Francis Group. Search in Google Scholar

Pollard, R., & Pollard, G. (2005). Venteja de ser el equipo local en fútbol: una reseña de su existencia y causas. Rev Int Fútbol Ciencia, 3(1), 31-44. Search in Google Scholar

Ponzo, M., & Scoppa, V. (2018). Does the home advantage depend on crowd support? Evidence from same-stadium derbies. Journal of Sports Economics, 19(4), 562-582. Search in Google Scholar

Pina, T. J., Paulo, A., & Araújo, D. (2017). Network characteristics of successful performance in association football. A study on the UEFA champions league. Frontiers in Psychology, 8, 266057. Search in Google Scholar

Ribeiro, J., Silva, P., Duarte, R., Davids, K., & Garganta, J. (2017). Team sports performance analysed through the lens of social network theory: implications for research and practice. Sports medicine, 47, 1689-1696. Search in Google Scholar

Sarmento, H., Clemente, F. M., Araújo, D., Davids, K., McRobert, A., & Figueiredo, A. (2018). What performance analysts need to know about research trends in association football (2012 2016): A systematic review. Sports medicine, 48, 799-836. Search in Google Scholar

Lago, C., & Martín, R. (2007). Determinants of possession of the ball in soccer. Journal of sports sciences, 25(9), 969-974. Search in Google Scholar

Link, D., & Anzer, G. (2021). How the COVID-19 pandemic has changed the game of soccer. International Journal of Sports Medicine, 83-93. Search in Google Scholar

Van Damme, N., & Baert, S. (2019). Home advantage in European international soccer: which dimension of distance matters? Economics, 13(1). Search in Google Scholar

Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Search in Google Scholar

Zeng, Y., & Zhang, H. (2022). Analysis of influencing factors of passes in the chinese super league. BMC Sports Science, Medicine and Rehabilitation, 14(1), 1-10. Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Informatica, Base dati e data mining, Informatica, altro, Sport e ricreazione, Educazione fisica, Sport e ricreazione, altro