Research and Implementation of Forest Fire Detection Algorithm Improvement
e
16 mar 2024
INFORMAZIONI SU QUESTO ARTICOLO
Pubblicato online: 16 mar 2024
Pagine: 90 - 102
DOI: https://doi.org/10.2478/ijanmc-2023-0080
Parole chiave
© 2023 Xi Zhou et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

EXPERIMENTAL SETTINGS
Lab Environment | Detail |
---|---|
programming language | Python3.8.5 |
operating system | Windows 10 |
deep learning framework | Pytorch 1.8.0 |
GPU | 4x NVIDIA TITIAN V |
DATASET SETTINGS
Dataset | Training | Test | Validation | Total |
---|---|---|---|---|
Homemade forest fire data set | 1442 | 617 | 617 | 2676 |
Other institutes data set | 600 | 200 | 200 | 1000 |
TRAINING SETTINGS PARAMETERS
Training parameters | Detail |
---|---|
Epochs | 100 |
Batch-size | 16 |
Image-size | 6 40 × 640 |
Initial learning rate | 0.01 |
Optimization algorithm | SGD |
COMPARATIVE TEST RESULTS OF THE MODEL
Model | P | R | FPS |
---|---|---|---|
YOLOv5s | 0.811 | 0.786 | 59 |
YOLOv5s + CBAM | 0.814 | 0.790 | 60 |
YOLOv5s + SE | 0.810 | 0.787 | 5 8 |
YOLOv5s +ECA | 0.812 | 0.791 | 5 9 |
YOLOv5s + dsCBAM | 0.812 | 0.787 | 62 |
YOLOv5s + dsCBAM +Alpha-IoU | 0.821 | 0.813 | 61 |
YOLOv5s + dsCBAM + SIoU | 0.860 | 0.834 | 60 |
YOLOv5s + dsCBAM+ VariFocal (Ours) | 0.871 | 0.816 | 64 |