Research on Iris Feature Extraction and Recognition Technology Based on Deep Learning
, , e
15 mar 2024
INFORMAZIONI SU QUESTO ARTICOLO
Pubblicato online: 15 mar 2024
Pagine: 35 - 45
DOI: https://doi.org/10.2478/ijanmc-2023-0064
Parole chiave
© 2023 Yufei Chen et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Figure. 1.

Figure. 2.

Figure. 3.

Figure. 4.

Figure. 5.

Figure. 6.

Figure. 7.

Figure. 8.

Figure. 9.

Figure. 10.

Figure. 11.

Figure. 12.

Figure. 13.

Figure. 14.

Figure. 15.

Analysis of experimental data
Test Methods | Training Set | Test Set | Number Of Correct Identifications | Recognition Rate % (Crr) |
---|---|---|---|---|
CNN | 400 | 60 | 56 | 92 |
LMD | 400 | 60 | 47 | 78 |
Comparison of the content of the two datasets
Training Set | Test Set | Training Set | Test Set | |
---|---|---|---|---|
Number of categories | 50 | 8 | 45 | 6 |
Number of images/classes | 20 | 20 | 10 | 10 |
Total number of images | 342 | 58 | 342 | 58 |