Accesso libero

Complementarity-Determining Region 3 (CDR3) of the Heavy Chain Only Antibodies: Therapeutic Perspectives

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Ackaert, C., Smiejkowska, N., Xavier, C., Sterckx, Y. G. J., Denies, S., Stijlemans, B., et al., 2021: Immunogenicity risk profile of nanobodies. Front. Immunol., 12, 632‒687. DOI: 10.3389/fimmu.2021.632687. Search in Google Scholar

2. Ballabh, P., Braun, A., Nedergaard, M., 2004: The blood-brain barrier: An overview: Structure, regulation, and clinical implications. Neurobiol. Dis., 16, 1, 1‒13. DOI: 10.1016/j. nbd.2003.12.016. Search in Google Scholar

3. Bannas, P., Hambach, J., Koch-Nolte, F., 2017: Nano-bodies and nanobody-based human heavy chain antibodies as antitumor therapeutics. Front. Immunol., 8, 1603. DOI: 10.3389/fimmu.2017.01603. Search in Google Scholar

4. Bhunia, S., Kolishetti, N., Vashist, A., Yndart Arias, A., Brooks, D., Nair, M., 2023: Drug delivery to the brain: Recent advances and unmet challenges. Pharmaceutics., 15, 12, 2658. DOI: 10.3390/pharmaceutics15122658. Search in Google Scholar

5. Birdhariya, B., Kesharwani, P., Jain, N. K., 2015: Effect of surface capping on targeting potential of folate decorated poly (propylene imine) dendrimers. Drug Dev. Ind. Pharm., 41, 8, 1393‒1399. DOI: 10.3109/03639045.2014.954584. Search in Google Scholar

6. Bowers, K. M., Mudrakola, V., 2020: Neuroinfections: Presentation, diagnosis, and treatment of meningitis and encephalitis. EMJ Neurology, 8, 1, 9‒102. DOI: 10.33590/emjneurol/20-00063. Search in Google Scholar

7. De Vos, J., Devoogdt, N., Lahoutte, T., Muyldermans, S., 2013: Camelid single-domain antibody-fragment engineering for (pre)clinical in vivo molecular imaging applications: adjusting the bullet to its target. Expert Opin. Biol. Ther., 13, 8, 1149–1160. DOI: 10.1517/14712598.2013.800478. Search in Google Scholar

8. Demeule, M., Currie, J. C., Bertrand, Y., Ché, C., Nguyen, T., Régina, A., et al., 2008: Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector angiopep-2. J. Neurochem., 106, 4, 534‒44. DOI: 10.1111/j.1471-4159.2008.05492.x. Search in Google Scholar

9. Dumoulin, M., Conrath, K., Van Meirhaeghe, A., Meersman, F., Heremans, K., Frenken, L. G., et al., 2002: Single-domain antibody fragments with high conformational stability. Protein Sci., 11, 3, 500‒515. DOI: 10.1110/ps.34602. Search in Google Scholar

10. Ellul, M., Solomon, T., 2018: Acute encephalitis ‒ diagnosis and management. Clin. Med., 18, 2, 155‒159. DOI: 10.7861/clinmedicine.18-2-155. Search in Google Scholar

11. Hamers-Casterman, C., Atarhouch, T., Muyldermans, S., Robinson, G., Hamers, C., Songa, E. B., et al., 1993: Naturally occurring antibodies devoid of light chains. Nature, 363, 6428, 446‒448. DOI: 10.1038/363446a0. Search in Google Scholar

12. Henry, K. A., MacKenzie, C. R., 2018: Antigen recognition by single-domain antibodies: structural latitudes and constraints. MAbs., 10, 6, 815‒826. DOI: 10.1080/19420862.2018.1489633. Search in Google Scholar

13. Hillman, Y., Lustiger, D., Wine, Y., 2019: Antibody-based nanotechnology. Nanotechnology, 30, 28, 282001. DOI: 10.1088/1361-6528/ab12f4. Search in Google Scholar

14. Holliger, P., Hudson, P. J., 2005: Engineered antibody fragments and the rise of single domains. Nat. Biotechnol., 23, 9, 1126‒1136. DOI: 10.1038/nbt1142. Search in Google Scholar

15. Hořejší, V., Bartůňková, J., Brdlička, T., Špíšek, R., 2017: Basics of Immunology (In Czech). 6th edn., Triton, Prague, 316 pp. Search in Google Scholar

16. Hruškovicová, J., Bhide, K., Petroušková, P., Tkáčová, Z., Mochnáčová, E., Čurlík, J., et al., 2022: Engineering the single domain antibodies targeting receptor binding motifs within the domain III of West Nile virus envelope glycoprotein. Front. Microbiol., 13, 801466. DOI: 10.3389/fmicb.2022.801466. Search in Google Scholar

17. Jin, S., Ye, K., 2007: Nanoparticle-mediated drug delivery and gene therapy. Biotechnol. Prog., 23, 1, 32‒41. DOI: 10.1021/bp060348j. Search in Google Scholar

18. Jovčevska, I., Muyldermans, S., 2020: The therapeutic potential of nanobodies. BioDrugs, 34, 1, 11‒26. DOI: 10.1007/s40259-019-00392-z. Search in Google Scholar

19. Kadry, H., Noorani, B., Cucullo, L., 2020: A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS, 17, 1, 69. DOI: 10.1186/s12987-020-00230-3. Search in Google Scholar

20. Leber, A. L., Everhart, K., Balada-Llasat, J. M., Cullison, J., Daly, J., Holt, S., et al., 2016: Multicenter evaluation of BioFire FilmArray Meningitis/Encephalitis Panel for detection of bacteria, viruses, and yeast in cerebrospinal fluid specimens. J. Clin. Microbiol., 54, 9, 2251‒2261. DOI: 10.1128/JCM.00730-16. Search in Google Scholar

21. Li, Z., Liu, T., Yang, N., Han, D., Mi, X., Li, Y., et al., 2020: Neurological manifestations of patients with COVID-19: potential routes of SARS-CoV-2 neuroinvasion from the periphery to the brain. Front. Med., 14, 5, 533‒541. DOI: 10.1007/s11684-020-0786-5. Search in Google Scholar

22. Lyons, T. W., McAdam, A. J., Cohn, K. A., Monuteaux, M. C., Nigrovic, L. E., 2012: Impact of in-hospital enteroviral polymerase chain reaction testing on the clinical management of children with meningitis. J. Hosp. Med., 7, 7, 517‒520. DOI: 10.1002/jhm.1947. Search in Google Scholar

23. Masserini, M., 2013: Nanoparticles for brain drug delivery. ISRN Biochem., 238428. DOI: 10.1155/2013/238428. Search in Google Scholar

24. Minatel, V. M., Prudencio, C. R., Barraviera, B., Ferreira, R.S., 2024: Nanobodies: A promising approach to treatment of viral diseases. Front. Immunol., 14. DOI:10.3389/fimmu.2023.1303353. Search in Google Scholar

25. Muyldermans, S., 2013: Nanobodies: Natural single-domain antibodies. Annu. Rev. Biochem., 82, 775‒797. DOI: 10.1146/annurev-biochem-063011-092449. Search in Google Scholar

26. Pardridge, W. M., 2012: Drug transport across the blood-brain barrier. J. Cereb. Blood Flow Metab., 32, 11, 1959‒1972. DOI: 10.1038/jcbfm.2012.126. Search in Google Scholar

27. Pethő, L., Oláh-Szabó, R., Mező, G., 2023: Influence of the drug position on bioactivity in Angiopep-2—Daunomycin conjugates. Int. J. Mol. Sci., 24, 4, 3106. DOI: 10.3390/ijms24043106. Search in Google Scholar

28. Pothin, E., Lesuisse, D., Lafaye, P., 2020: Brain delivery of single-domain antibodies: A focus on VHH and VNAR. Pharmaceutics, 12, 10, 937. DOI: 10.3390/pharmaceutics12100937. Search in Google Scholar

29. Qiu, L., Feng, Y., Ma, X., Li, J., 2017: A camel anti-lysozyme CDR3 only domain antibody selected from phage display VHH library acts as potent lysozyme inhibitor. Acta Biochim. Biophys. Sin., 49, 6, 513‒519. DOI: 10.1093/abbs/gmx037. Search in Google Scholar

30. Roux, K. H., Greenberg, A. S., Greene, L., Strelets, L., Avila, D., McKinney, E. C., et al., 1998: Structural analysis of the nurse shark (new) antigen receptor (NAR): Molecular convergence of NAR and unusual mammalian immunoglobulins. Proc. Natl. Acad. Sci. U.S.A., 95, 20, 11804‒11809. DOI: 10.1073/pnas.95.20.11804. Search in Google Scholar

31. Ruiz-López, E., Schuhmacher, A. J., 2021: Transportation of single-domain antibodies through the blood-brain barrier. Biomolecules, 11, 8, 1131. DOI: 10.3390/biom11081131. Search in Google Scholar

32. Salvador, J. P., Vilaplana, L., Marco, M. P., 2019: Nano-body: Outstanding features for diagnostic and therapeutic applications. Anal. Bioanal. Chem., 411, 9, 1703‒1713. DOI: 10.1007/s00216-019-01633-4. Search in Google Scholar

33. Stanimirovic, D., Kemmerich, K., Haqqani, A. S., Farrington, G. K., 2014: Engineering and pharmacology of blood-brain barrier-permeable bispecific antibodies. Adv. Pharmacol., 71, 301‒335. DOI: 10.1016/bs.apha.2014.06.005. Search in Google Scholar

34. Steeland, S., Vandenbroucke, R. E., Libert, C., 2016: Nanobodies as therapeutics: Big opportunities for small antibodies. Drug Discov. Today, 21, 7, 1076‒1113. DOI: 10.1016/j.drudis.2016.04.003. Search in Google Scholar

35. Tanski, M. E., Ma, O. J., 2020: Central nervous system and spinal infections. In Tintinalli’s Emergency Medicine: A Comprehensive Study Guide. 9th edn., McGraw-Hill Education: New York, NY. Available online at https://accessmedicine.mhmedical.com/content.aspx? Search in Google Scholar

36. Tegally, H., Wilkinson, E., Giovanetti, M., Iranzadeh, A., Fonseca, V., Giandhari, J., et al., 2020: Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. medRxiv., 12, 21. DOI: 10.1101/2020.12.21.20248640. Search in Google Scholar

37. Tyagi, K., Rai, P., Gautam, A., Kaur, H., Kapoor, S., Suttee, A., et al., 2023: Neurological manifestations of SARSCoV-2: complexity, mechanism and associated disorders. Eur. J. Med. Res., 28, 1, 307. DOI: 10.1186/s40001-023-01293-2. Search in Google Scholar

38. Wesolowski, J., Alzogaray, V., Reyelt, J., Unger, M., Juarez, K., Urrutia, M., et al., 2009: Single domain antibodies: Promising experimental and therapeutic tools in infection and immunity. Med. Microbiol. Immunol., 198, 3, 157‒174. DOI: 10.1007/s00430-009-0116-7. Search in Google Scholar

39. Wevers, N. R., De Vries, H. E., 2023: Microfluidic models of the neurovascular unit: A translational view. Fluids Barriers CNS, 20, 1, 86. DOI: 10.1186/s12987-023-00490-9. Search in Google Scholar

40. Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., et al., 2020: A new coronavirus associated with human respiratory disease in China. Nature, 579, 7798, 265‒269. DOI: 10.1038/s41586-020-2008-3. Search in Google Scholar

eISSN:
2453-7837
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Molecular Biology, Biotechnology, Microbiology and Virology, Medicine, Veterinary Medicine