INFORMAZIONI SU QUESTO ARTICOLO

Cita

Ahlawat, J., Guilama Barroso, G., Masoudi Asil, S., Alvarado, M., Armendariz, I., Bernal, J., et al., 2020: Nanocarriers as potential drug delivery candidates for overcoming the blood-brain barrier: Challenges and possibilities. ACS Omega, 5, 22, 12583–12595. DOI: 10.1021/acsomega.0c01592.Search in Google Scholar

Barr, J. J., 2017: A bacteriophages journey through the human body. Immunol. Rev., 279, 1, 106–122. DOI: 10.1111/imr.12565.Search in Google Scholar

Bellettato, C. M., Scarpa, M., 2018: Possible strategies to cross the blood-brain barrier. Ital. J. Ped., 44, 2, 131. DOI: 10.1186/s13052-018-0563-0.Search in Google Scholar

Cabezas, S., Rojas, G., Pavon, A., Alvarez, M., Pupo, M., Guillen, G., et al., 2008: Selection of phage-displayed human antibody fragments on Dengue virus particles captured by a monoclonal antibody: application to the four serotypes. J. Virol. Methods, 147, 2, 235–243. DOI: 10.1016/j.jviromet.2007.09.001.Search in Google Scholar

Carrera, M. R., Kaufmann, G. F., Mee, J. M., Meijler, M. M., Koob, G. F., Janda K. D., 2004: Treating cocaine addiction with viruses. Proc. Natl. Acad. Sci. USA. 101, 28, 10416–10421. DOI: 10.1073/pnas.0403795101.Search in Google Scholar

Carroll-Portillo, A., Lin, H. C., 2019: Bacteriophage and the innate immune system: Access and signaling. Microorganisms, 7, 12. DOI: 10.3390/microorganisms7120625.Search in Google Scholar

Chambers, T. J., Diamond, M. S., 2003: Pathogenesis of flavivirus encephalitis. Adv. Virus Res., 60, 273–342. DOI: 10.1016/s0065-3527(03)60008-4.Search in Google Scholar

Cho, C. F., Ghotmi, Y., Fadzan, C., Wolfe, J., Bergmann, S., Qu, Y., et al., 2018: DDIS-26. BTP-7, a novel peptide for, therapeutic targeting of malignanat brain tumours. Neuro-Oncology, 20, 6, 74. DOI: 10.1093/neuonc/noy148.305.Search in Google Scholar

Chopin, M. C., Rouault, A., Ehrlich, S. D., Gautier, M., 2002: Filamentous phage active on the gram-positive bacterium Propionibacterium freudenreichii. J. Bacteriol., 184, 7, 2030–2033. DOI: 10.1128/jb.184.7.2030-2033.2002.Search in Google Scholar

Dimant, H., Solomon, B., 2010: Filamentous phages reduce alpha-synuclein oligomerization in the membrane fraction of SH-SY5Y cells. Neurodegener. Dis., 7, 1–3, 203–205. DOI: 10.1159/000295664.Search in Google Scholar

Dubos, R. J., Straus, J. H., Pierce, C., 1943: The multiplication of bacteriphage in vivo and its protective effect against an experimental infection with Shigella dysenteriae. J. Exp. Med., 78, 3, 161–168. DOI: 10.1084/jem.78.3.161.Search in Google Scholar

Dyrna, F., Hanske S., Krueger, M., Bechmann, I., 2013: The blood-brain barrier. J. Neuroimmune Pharmacol., 8, 4, 763–773. DOI: 10.1007/s11481-013-9473-5.Search in Google Scholar

Frenkel, D., Solomon, B., 2002: Filamentous phage as vector-mediated antibody delivery to the brain. Proc. Nat. Acad. Sci., 99, 8, 5675–5679. DOI: 10.1073/pnas.072027199.Search in Google Scholar

Grab, D. J., Perides, G., Dumler, J. S., Kim, K. J., Park, J., Kim, Y. V., et al., 2005: Borrelia burgdorferi, host-derived proteases, and the blood-brain barrier. Infect. Immun., 73, 2, 1014–1022. DOI: 10.1128/iai.73.2.1014-1022.2005.Search in Google Scholar

Hanlon, G. W., 2007: Bacteriophages: An appraisal of their role in the treatment of bacterial infections. Int. J. Antimicrob. Agents, 30, 2, 118–128. DOI: 10.1016/j.ijantimicag.2007.04.006.Search in Google Scholar

Hay, I. D., Lithgow, T., 2019: Filamentous phages: Masters of a microbial sharing economy. EMBO Rep., 20, 6. DOI: 10.15252/embr.201847427.Search in Google Scholar

Hruškovicová, J., Bhide, K., Petroušková, P., Tkáčová, Z., Mochnáčová, E., Bhide, M., et al., 2022: Engineering the single domain antibodies targeting receptor binding motifs within the domain III of West Nile virus envelope glycoprotein. Front. Microbiol., 13, 801466. DOI: 10.3389/fmicb.2022.801466.Search in Google Scholar

Ivanenkov, V., Felici, F., Menon, A. G., 1999: Uptake and intracellular fate of phage display vectors in mammalian cells. Biochim. Biophysic. Acta (BBA) – Mol. Cell Res., 1448, 3, 450–462. DOI: 10.1016/S0167-4889(98)00162-1.Search in Google Scholar

Jernigan, D. A., Hart, M. C., Dodd, K. K., Jameson, S., Farney, T., et al., 2021: Induced native phage therapy for the treatment of Lyme disease and relapsing fever: A retrospective review of first 14 months in One clinic. Cureus. 13, 11, e20014. DOI: 10.7759/cureus.20014.Search in Google Scholar

Johnston, N., 2002: Viral Trojan horse for combating tuberculosis. Drug Discovery Today, 7, 6, 333–335. DOI: 10.1016/S1359-6446(02)02222-5.Search in Google Scholar

Ju, Z., Sun, W., 2017: Drug delivery vectors based on filamentous bacteriophages and phage-mimetic nanoparticles. Drug Deliv., 24, 1, 1898–1908. DOI: 10.1080/10717544.2017.1410259.Search in Google Scholar

Kadry, H., Noorani, B., Cucullo, L. A., 2020: A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids and Barriers of the CNS, 17, 1, 69. DOI: 10.1186/s12987-020-00230-3.Search in Google Scholar

Karimi, M., Mirshekari, H., Moosavi Basri, S. M., Bahrami, S. Moghofei, M., Hamblin, M. R., et al., 2016: Bacteriophages and phage-inspired nanocarriers for targeted delivery of therapeutic cargos. Adv. Drug Deliv. Rev., 106, 45–62. DOI: 10.1016/j.addr.2016.03.003.Search in Google Scholar

Keller, R., Engley, F. B., Jr., 1958: Fate of bacteriophage particles introduced into mice by various routes. Proc. Soc. Exper. Biol. Med., 98, 3, 577–580. DOI: 10.3181/00379727-98-24112.Search in Google Scholar

Kleinbeck, F., Kuhn, A., 2021: Membrane insertion of the M13 minor coat protein G3p is dependent on YidC and the SecAYEG translocase. Viruses, 13, 7. DOI: 10.3390/v13071414.Search in Google Scholar

Krishnan, R., Tsubery, H., Proschitsky, M. Y., Asp, E., Lulu, M., Gilead, S., et al., 2014: A bacteriophage capsid protein provides a general amyloid interaction motif (GAIM) that binds and remodels misfolded protein assemblies. J. Mol. Biol., 426, 13, 2500–2519. DOI: 10.1016/j.jmb.2014.04.015.Search in Google Scholar

Ksendzovsky, A., Walbridge, S., Saunders, R. C., Asthagiri, A. R., Heiss, J. D., Lonser, R. R., et al., 2012: Convection-enhanced delivery of M13 bacteriophage to the brain. J. Neurosurg., 117, 2, 197–203. DOI: 10.3171/2012.4.Jns111528.Search in Google Scholar

Li, J., Feng, L., Jiang, X., 2015: In vivo phage display screen for peptide sequences that cross the blood–cerebro-spinal-fluid barrier. Amino Acids, 47, 2, 401–405. DOI: 10.1007/s00726-014-1874-0.Search in Google Scholar

Lubkowski, J., Hennecke, F., Plückthun, A., Wlodawer, A., 1999: Filamentous phage infection: Crystal structure of g3p in complex with its coreceptor, the C-terminal domain of TolA. Structure, 7, 6, 711–722. DOI: 10.1016/s0969-2126(99)80092-6.Search in Google Scholar

Majerova, P., Hanes, J., Olesova, D., Sisnky, J., Pilipcinec, E., Kovac, A., 2020: Novel blood-brain barrier shuttle peptides discovered through the phage display method. Molecules, 25, 4. DOI: 10.3390/molecules25040874.Search in Google Scholar

Messing, J., 2016: Phage M13 for the treatment of Alzheimer and Parkinson disease. Gene. 583, 2, 85–89. DOI: 10.1016/j. gene.2016.02.005.Search in Google Scholar

Moineau, S., 2013: Bacteriophage. In Maloy, S., Hughes, K. (Ed.): Brenner’s Encyclopedia of Genetics, 2nd edn., Academic Press, San Diego, 280–283. Search in Google Scholar

Møllgård, K., Dziegielewska, K. M., Holst, C. B., Hab-good, M. D., Saunders, N. R., et al., 2017: Brain barriers and functional interfaces with sequential appearance of ABC efflux transporters during human development. Sci. Rep., 7, 1, 11603. DOI: 10.1038/s41598-017-11596-0.Search in Google Scholar

Nguyen, S., Baker, K., Padman, B. S., Patwa, R., Dunstan, R. A., Weston, T. W., et al., 2017: Bacteriophage transcytosis provides a mechanism to cross epithelial cell layers. mBio, 8, 6. DOI: 10.1128/mbio.01874-17.Search in Google Scholar

Ojala, V., Laitalainen, J., Jalasvouri, M., 2013: Fight evolution with evolution: Plasmid-dependent phages with a wide host range prevent the spread of antibiotic resistance. Evol. Appl., 6, 6, 925–932. DOI: 10.1111/eva.12076.Search in Google Scholar

Riechmann, L., Holliger, P., 1997: The C-terminal domain of TolA is the coreceptor for filamentous phage infection of E. coli. Cell, 90, 2, 351–360. DOI: 10.1016/s0092-8674(00)80342-6.Search in Google Scholar

Smith, G. P., Petrevenko, V. A., 1997: Phage display. Chem. Rev., 97, 2, 391–410. DOI: 10.1021/cr960065d.Search in Google Scholar

Songsivilai, S., Dharakul, T., 1998: Genetically engineered single-chain Fvs of human immunoglobulin against hepatitis C virus nucleocapsid protein derived from universal phage display library. Asian Pac. J. Allergy Immunol., 16, 1, 31. Search in Google Scholar

Terstappen, G. C., Meyer, A. H., Bell, R. D., Zhang, W., et al., 2021: Strategies for delivering therapeutics across the blood–brain barrier. Nat. Rev. Drug Discov., 20, 5, 362–383. DOI: 10.1038/s41573-021-00139-y.Search in Google Scholar

Tsedev, U., Lin, C. W., Hess, G. T., Sarkaria, J. N., Lam, F. C., Belcher, A. M., 2022: Phage particles of controlled length and genome for in vivo targeted glioblastoma imaging and therapeutic delivery. ACS Nano, 16, 8, 11676–11691. DOI: 10.1021/acsnano.1c08720.Search in Google Scholar

Ueno, M., 2009: Mechanisms of the penetration of blood-borne substances into the brain. Curr. Neuropharmacol., 7, 2, 142–149. DOI: 10.2174/157015909788848901.Search in Google Scholar

Wan, X. M., Chen, Y. P., Xu, W. R., Yang, W. J., Wen, L. P., 2009: Identification of nose-to-brain homing peptide through phage display. Peptides, 30, 2, 343–350. DOI: 10.1016/j.peptides.2008.09.026.Search in Google Scholar

Wang, Y., Sheng, J., Chai, J., Zhu, C., Li, X., Yang, W., Cui, R., et al., 2021: Filamentous bacteriophage – a powerful carrier for glioma therapy. Front. Immunol., 12, 729336. DOI: 10.3389/fimmu.2021.729336.Search in Google Scholar

Wood, T., Nance, E., 2019: Disease-directed engineering for physiology-driven treatment interventions in neurological disorders. APL Bioeng., 3, 4, 040901. DOI: 10.1063/1.5117299.Search in Google Scholar

Wu, D., Chen, Q. Chen X., Han, F., Chen, Z., Wang, Y., 2023: The blood–brain barrier: Structure, regulation, and drug delivery. Signal Transd. Target. Ther., 8, 1, 217. DOI: 10.1038/s41392-023-01481-w.Search in Google Scholar

Wu, L. P., Ahmadvand, D., Su, J., Hall, A., Tan, X., Farhangrazi, Z. S., et al., 2019: Crossing the blood-brain-barrier with nanoligand drug carriers self-assembled from a phage display peptide. Nat. Commun., 10, 1, 4635. DOI: 10.1038/s41467-019-12554-2.Search in Google Scholar

Yang, F., Liu, L., Neuenschwander, P. F., Idell, S., Vankayalapati, R., Jain, K. G., et al., 2022: Phage display-derived peptide for the specific binding of SARS-CoV-2. ACS Omega, 7, 4, 3203–3211. DOI: 10.1021/acsomega.1c04873.Search in Google Scholar

eISSN:
2453-7837
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Molecular Biology, Biotechnology, Microbiology and Virology, Medicine, Veterinary Medicine