INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Alam, M. R., Ji, J. R., Kim, M. S., Kim, N. S., 2011: Bio-markers for identifying the early phases of osteoarthritis secondary to medial patellar luxation in dogs. J. Vet. Sci., 12, 3 273–280. DOI: 10.4142/jvs.2011.12.3.273.Search in Google Scholar

2. Bollier, M., Fulkerson, J. P., 2011: The role of trochlear dysplasia in patellofemoral instability. J. Am. Acad. Orthop. Surg., 19, 1, 8–16.Search in Google Scholar

3. Bosio, F., Bufalari, A., Peirone, B., Petazzoni, M., Vezzoni, A., 2017: Prevalence, treatment and outcome of patellar luxation in dogs in Italy. Vet. Comp. Orthop. Traumatol., 30, 5, 364–370. DOI: 10.3415/VCOT-16-05-0073.Search in Google Scholar

4. Botchu, R., Obaid, H., Rennie, W. J., 2013: Correlation between trochlear dysplasia and the notch index. J. Orthop. Surg., 21, 3, 290–293. DOI: 10.1177/230949901302100.Search in Google Scholar

5. Brattström, H., 1964: Shape of the intercondylar groove normally and in recurrent dislocation of patella: a clinical and x-ray anatomical investigation. Acta Orthop. Scand., 35 (Sup68), 1–148. DOI: 10.3109/ort.1964.35.suppl-68.01.Search in Google Scholar

6. Carneiro, R. K., Souza, M. D. J., Bing, R. S., Alievi, M. M., Feliciano, M. A. R., Ferreira, M. P., 2020: Radio-graphic assessment of the depth of the troclear groove and patellar diameter in dogs. Acta Sci. Vet., 48, 1754. DOI: 10.22456/1679-9216.103129.Search in Google Scholar

7. Carpenter Jr, D. H., Cooper, R. C., 2000: Mini review of canine stifle joint anatomy. Anat. Histol. Embryol., 29, 6, 321–329. DOI: 10.1046/j.1439-0264.2000.00289.x.Search in Google Scholar

8. Dai, Y., Lu, J., Li, F., Yang, G., Ji, G., Wang, F., 2021: Changes in cartilage and subchondral bone in a growing rabbit experimental model of developmental trochlear dysplasia of the knee. Connect. Tissue Res., 62, 3, 299–312. DOI: 10.1080/03008207.2019.1697245.Search in Google Scholar

9. Davies-Tuck, M., Teichtahl, A. J., Wluka, A. E., Wang, Y., Urquhart, D. M., Cui, J., et al., 2008: Femoral sulcus angle and increased patella facet cartilage volume in an osteoarthritic population. Osteoarthr. Cartil., 16, 1, 131–135. DOI: 10.1016/j.joca.2007.08.002.Search in Google Scholar

10. Dejour, H., Walch, G., Nove-Josserand, L., Guier, C. H., 1994: Factors of patellar instability: an anatomic radiographic study. Knee Surg. Sports Traumatol. Arthrosc., 2, 19–26. DOI: 10.1007/BF01552649.Search in Google Scholar

11. Di Dona, F., Della Valle, G., Fatone, G., 2018: Patellar luxation in dogs. Vet. Med. Res. Rep., 9, 23–32. DOI: 10.2147/VMRR.S142545.Search in Google Scholar

12. Dong, C., Zhao, C., Li, M., Fan, C., Feng, X., Piao, K., et al., 2021: Accuracy of tibial tuberosity-trochlear groove distance and tibial tuberosity-posterior cruciate ligament distance in terms of the severity of trochlear dysplasia. J. Orthop. Surg. Res., 16, 1, 383. DOI: 10.1186/s13018-021-02527-x.Search in Google Scholar

13. Escala, J. S., Mellado, J. M., Olona, M., Giné, J., Saurí, A., Neyret, P., 2006: Objective patellar instability: MR-based quantitative assessment of potentially associated anatomical features. Knee Surg. Sports Traumatol. Arthrosc., 14, 264–272. DOI: 10.1007/s00167-005-0668-z.Search in Google Scholar

14. Evans, H. E., Hermanson, J. W., 1993: The skeleton, arthrology, the muscular system. Miller’s Anatomy of the Dog, 3, 122.Search in Google Scholar

15. Garnoeva, R. S., 2021: Evaluation of trochlear dysplasia in dogs with medial patellar luxation-comparative studies. Acta Sci. Vet., 49, 1845. DOI: 10.22456/1679-9216.118579.Search in Google Scholar

16. Garnoeva, R. S., 2022: Sex-associated differences in patellotrochlear morphology in small-breed dogs. Thai J. Vet. Med., 52, 3, 607–611. DOI: 10.14456/tjvm.2022.70.Search in Google Scholar

17. Grelsamer, R. P., Meadows, S., 1992: The modified Insall– Salvati ratio for assessment of patellar height. Clin. Orthop. Relat. Res., 282, 170–176.Search in Google Scholar

18. Hingelbaum, S., Best, R., Huth, J., Wagner, D., Bauer, G., Mauch, F., 2014: The TT-TG Index: A new knee size adjusted measure method to determine the TT-TG distance. Knee Surg. Sports Traumatol. Arthrosc., 22, 2388–2395. DOI: 10.1007/s00167-014-3204-1.Search in Google Scholar

19. Hodel, S., Torrez, C., Hoch, A., Fürnstahl, P., Vlachopoulos, L., Fucentese, S. F., 2023: Increased femoral curvature and trochlea flexion in high-grade patellofemoral dysplastic knees. Knee Surg. Sports Traumatol. Arthrosc., 31, 4, 1361–1369. DOI: 10.1007/s00167-022-07080-6.Search in Google Scholar

20. Huri, G., Atay, O. A., Ergen, B., Atesok, K., Johnson, D. L., Doral, M. N., 2012: Development of femoral trochlear groove in growing rabbit after patellar instability. Knee Surg. Sports Traumatol. Arthrosc., 20, 232–238. DOI: 10.1007/s00167-011-1603-0.Search in Google Scholar

21. Imhoff, F. B., Funke, V., Muench, L. N., Sauter, A., Englmaier, M., Woertler, K., et al., 2020: The complexity of bony malalignment in patellofemoral disorders: femoral and tibial torsion, trochlear dysplasia, TT–TG distance, and frontal mechanical axis correlate with each other. Knee Surg. Sports Traumatol. Arthrosc., 28, 897–904. DOI: 10.1007/s00167-019-05542-y.Search in Google Scholar

22. Kang, H., Lu, J., Li, F., Dai, Y., Dong, Z., Dong, C., et al., 2020: The effect of increased femoral anteversion on the morphological and trabecular microarchitectural changes in the trochlea in an immature rabbit. J. Adv. Res., 23, 143–149. DOI: 10.1016/j.jare.2020.02.002.Search in Google Scholar

23. Kazley, J. M., Banerjee, S., 2019: Classifications in brief: The Dejour classification of trochlear dysplasia. Clin. Orthop. Relat. Res., 477, 10, 2380. DOI: 10.1097/CORR.0000000000000886.Search in Google Scholar

24. Keser, S., Savranlar, A., Bayar, A., Ege, A., Turhan, E., 2008: Is there a relationship between anterior knee pain and femoral trochlear dysplasia? Assessment of lateral trochlear inclination by magnetic resonance imaging. Knee Surg. Sports Traumatol. Arthrosc., 16, 911–915. DOI: 10.1007/s00167-008-0571-5.Search in Google Scholar

25. Kramer, M., Stengel, H., Gerwing, M., Schimke, E., Sheppard, C., 1999: Sonography of the canine stifle. Vet. Radiol. Ultrasound., 40, 3, 282–293. DOI: 10.1111/j.1740-8261.1999.tb00363.x.Search in Google Scholar

26. Levy, B. J., Tanaka, M. J., Fulkerson, J. P., 2021: Current concepts regarding patellofemoral trochlear dysplasia. Am. J. Sports Med., 49, 6, 1642–1650. DOI: 10.1177/0363546520958.Search in Google Scholar

27. Li, W., Wang, Q., Wang, F., Zhang, Y., Ma, L., Dong, J., 2013: Femoral trochlear dysplasia after patellar dislocation in rabbits. The Knee, 20, 6, 485–489. DOI: 10.1016/j.knee.2013.05.016.Search in Google Scholar

28. Li, W., Wang, S., Tang, S., Dong, Z., Wang, F., 2022: What is the relationship between the breech presentation and femoral trochlear dysplasia? An experimental study of the breech presentation model in neonatal rats. BMC Musculoskelet. Disord., 23, 1, 1–9. DOI: 10.1186/s12891-022-05023-3.Search in Google Scholar

29. Liebensteiner, M. C., Ressler, J., Seitlinger, G., Djurdjevic, T., El Attal, R., Ferlic, P. W., 2016: High femoral ante-version is related to femoral trochlea dysplasia. Arthrosc. J. Arthrosc. Relat. Surg., 32, 11, 2295–2299. DOI: 10.1016/j.arthro.2016.03.023.Search in Google Scholar

30. Longo, F., Memarian, P., Knell, S. C., Contiero, B., Pozzi, A., 2023: Computed tomographic measurements of the fem-oral trochlea in dogs with and without medial patellar luxation. Vet. Surg., 52, 3, 395–406. DOI: 10.1111/vsu.13903.Search in Google Scholar

31. Lu, J., Wang, C., Li, F., Ji, G., Wang, Y., Wang, F., 2020: Changes in cartilage and subchondral bone of femoral troch-lear groove after patellectomy in growing rabbits. Orthop. Surg., 12, 2, 653–660. DOI: 10.1111/os.12631.Search in Google Scholar

32. Marino, D. J., Loughin, C. A., 2010: Diagnostic imaging of the canine stifle: a review. Vet. Surg., 39, 3, 284–295. DOI: 10.1111/j.1532-950X.2010.00678.x.Search in Google Scholar

33. Matchwick, A., Bridges, J. P., Mielke, B., Pead, M. J., Phillips, A., Meeson, R. L., 2020: Computed tomographic measurement of trochlear depth in three breeds of brachycephalic dog. Vet. Comp. Orthop. Traumatol., 34, 2, 124–129. DOI: 10.1055/s-0040-1719165.Search in Google Scholar

34. Meier, H. T., Biller, D. S., Lora-Michiels, M., Hoskinson, J. J., 2001: Additional radiographic views of the pelvis and pelvic limb in dogs. Compend. Contin. Educ. Pract. Vet. – N. Am. Ed., 23, 10, 871–879.Search in Google Scholar

35. Meyer, H., Kaiser, S., Waibl, H., Brunnberg, L., 2002: Radiological parameters for preoperative planning of the surgical correction of canine congenital patellar luxation. Kleintierpraxis, 47, 3, 129–138.Search in Google Scholar

36. Mochizuki, M., Honnami, M., 2022: Computed tomographic measurements of the sulcus angle of the femoral trochlea in small-breed dogs with and without medial patellar luxation. Vet. Comp. Orthop. Traumatol., 35, 5, 314–320. DOI: 10.1055/s-0042-1749151.Search in Google Scholar

37. Mullangi, S., Lekkala, M. R., 2020: StatPearls Publishing (StatPearls PublishingCopyright© 2020).Search in Google Scholar

38. Nicetto, T., Longo, F., Contiero, B., Isola, M., Petazzoni, M., 2020: Computed tomographic localization of the deepest portion of the femoral trochlear groove in healthy dogs. Vet. Surg., 49, 6, 1246–1254. DOI: 10.1111/vsu.13426.Search in Google Scholar

39. Oxley, B., Gemmill, T. J., Pink, J., Clarke, S., Parry, A., Baines, S., et al., 2013: Precision of a novel computed tomographic method for quantification of femoral varus in dogs and an assessment of the effect of femoral malpositioning. Vet. Surg., 42, 6, 751–758. DOI: 10.1111/j.1532-950X.2013.12032.x.Search in Google Scholar

40. Pace, J. L., Cheng, C., Joseph, S. M., Solomito, M. J., 2020: Effect of trochlear dysplasia on commonly used radiographic parameters to assess patellar instability. Orthop. J. Sports Med., 8, 7, 2325967120938760. DOI: 10.1177/23259671209387.Search in Google Scholar

41. Paiva, M., Blønd, L., Hölmich, P., Steensen, R. N., Diederichs, G., Feller, J. A., et al., 2018: Quality assessment of radiological measurements of trochlear dysplasia; a literature review. Knee Surg. Sports Traumatol. Arthrosc., 26, 746–755. DOI: 10.1007/s00167-017-4520-z.Search in Google Scholar

42. Petazzoni, M., De Giacinto, E., Troiano, D., Denti, F., Buiatti, M., 2018: Computed tomographic trochlear depth measurement in normal dogs. Vet. Comp. Orthop. Trauma-tol., 31, 6, 431–437. DOI: 10.1055/s-0038-1668097.Search in Google Scholar

43. Powers, C. M., 2000: Patellar kinematics, part II: the influence of the depth of the trochlear groove in subjects with and without patellofemoral pain. Phys. Ther., 80, 10, 965–973. DOI: 10.1093/ptj/80.10.965.Search in Google Scholar

44. Rhee, S. J., Haddad, F. S., 2008: Patello-femoral joint in total knee replacement. Curr. Orthop., 22, 2, 132–138. DOI 10.1016/j.cuor.2008.04.011.Search in Google Scholar

45. Rhee, S. J., Pavlou, G., Oakley, J., Barlow, D., Haddad, F., 2012: Modern management of patellar instability. Int. Orthop., 36, 2447–2456. DOI: 10.1007/s00264-012-1669-4.Search in Google Scholar

46. Robins, G. M., 1993: Canine Orthopedics. Lea and Febiger, Philadelphia. 693–702.Search in Google Scholar

47. Roush, J. K., 1993: Canine patellar luxation. Vet. Clin. N. Am. Small Anim. Pract., 23, 4, 855–868. DOI: 10.1016/S0195-5616(93)50087-6.Search in Google Scholar

48. Saccomanno, M. F., Maggini, E., Vaisitti, N., Pianelli, A., Grava, G., Cattaneo, S., et al., 2022: Sulcus angle, trochlear depth and Dejour’s classification can be reliably applied to evaluate trochlear dysplasia: a systematic review of radiological measurements. Arthrosc. J. Arthrosc. Relat. Surg., DOI: 10.1016/j.arthro.2022.08.039.Search in Google Scholar

49. Shih, Y. F., Bull, A. M., Amis, A. A., 2004: The cartilaginous and osseous geometry of the femoral trochlear groove. Knee Surg. Sports Traumatol. Arthrosc., 12, 300–306. DOI: 10.1007/s00167-003-0414-3.Search in Google Scholar

50. Tan, S. H. S., Chng, K. S. J., Lim, B. Y., Wong, K. L., Doshi, C., Lim, A. K. S., et al., 2020: The difference between cartilaginous and bony sulcus angles for patients with or without patellofemoral instability: a systematic review and meta-analysis. J. Knee Surg., 33, 3, 235–241. DOI: 10.1055/s-0038-1677541.Search in Google Scholar

51. Tang, S., Li, W., Wang, S., Wang, F., 2023: Abnormal patellar loading may lead to femoral trochlear dysplasia: an experimental study of patellar hypermobility and patellar dislocation in growing rats. J. Orthop. Surg. Res., 18, 1, 39. DOI: 10.1186/s13018-023-03500-6.Search in Google Scholar

52. Towle, H. A., Griffon, D. J., Thomas, M. W., Siegel, A. M., Dunning, D., Johnson, A., 2005: Pre‐and postoperative radiographic and computed tomographic evaluation of dogs with medial patellar luxation. Vet. Surg., 34, 3, 265–272. DOI: 10.1111/j.1532-950x.2005.00040.x.Search in Google Scholar

53. Utting, M. R., Mulford, J. S., Eldridge, J. D. J., 2008: A prospective evaluation of trochleoplasty for the treatment of patellofemoral dislocation and instability. J. Bone Joint Surg. Br. Vol., 90, 2, 180–185. DOI: 10.1302/0301-620X.90B2.20017.Search in Google Scholar

54. Van Haver, A., De Roo, K., De Beule, M., Labey, L., De Baets, P., Dejour, D., et al., 2015: The effect of trochlear dysplasia on patellofemoral biomechanics: a cadaveric study with simulated trochlear deformities. Am. J. Sports Med., 43, 6, 1354–1361. DOI: 10.1177/0363546515572143.Search in Google Scholar

55. Van Huyssteen, A. L., Hendrix, M. R. G., Barnett, A. J., Wakeley, C. J., Eldridge, J. D. J., 2006: Cartilage-bone mismatch in the dysplastic trochlea: An MRI study. J. Bone Joint Surg. Br. Vol., 88, 5, 688–691. DOI: 10.1302/0301-620X.88B5.16866.Search in Google Scholar

56. Verhulst, F. V., van Sambeeck, J. D., Olthuis, G. S., van der Ree, J., Koëter, S., 2020: Patellar height measurements: Insall–Salvati ratio is most reliable method. Knee Surg. Sports Traumatol. Arthrosc., 28, 869–875. DOI 10.1007/s00167-019-05531-1.Search in Google Scholar

57. Wang, S., Ji, G., Yang, X., Wang, X., Wang, R., Li, M., et al., 2016: Femoral trochlear groove development after patellar subluxation and early reduction in growing rabbits. Knee Surg. Sports Traumatol. Arthrosc., 24, 247–253. DOI: 10.1007/s00167-014-3372-z.Search in Google Scholar

58. Yang, G., Li, F., Lu, J., Niu, Y., Dai, Y., et al., 2019: The dysplastic trochlear sulcus due to the insufficient patellar stress in growing rats. BMC Musculoskelet. Disord., 20, 411, DOI: 10.1186/s12891-019-2802-y.Search in Google Scholar

59. Ye, Q., Yu, T., Wu, Y., Ding, X., Gong, X., 2019: Patellar instability: the reliability of magnetic resonance imaging measurement parameters. BMC Musculoskelet. Disord., 20, 1, DOI: 10.1186/s12891-019-2697-7.Search in Google Scholar

eISSN:
2453-7837
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Molecular Biology, Biotechnology, Microbiology and Virology, Medicine, Veterinary Medicine