[
1. Aravinthan, A., Park, J. K., Hossain, M. A., Sharmila, J., Kim, H. J., Kang, C. W., et al., 2018: Collagen-based sponge hastens wound healing via decrease of inflammatory cytokines. Biotech., 3, 8, 1‒9. DOI: 10.1007/s13205-018-14 97-3.
]Search in Google Scholar
[
2. Beckman, M. J., Shields, K. J., Diegelmann, R. F., 2004: Collagen. In Dekker, M.: Encyclopedia of Biomaterials and Biomedical Engineering, New York, Inc., 324‒334.
]Search in Google Scholar
[
3. Bohling, M. W., Henderson, R. A., Swaim, S. F., Kincaid, S. A., Wright, J. C., 2004: Cutaneous wound healing in the cat: a macroscopic description and comparison with cutaneous wound healing in the dog. Vet. Surg., 33, 579‒587. DOI: 10.1111/j.1532-950X.2004.04081.x.10.1111/j.1532-950X.2004.04081.x15659012
]Search in Google Scholar
[
4. Boyce, S. T., Christianson, D. J., Hansbrough, J. F., 1988: Structure of a collagen-GAG dermal skin substitute optimized for cultured human epidermal keratinocytes. J. Biomed. Mater. Res., 22, 10, 939‒957. DOI: 10.1002/jbm.820221008.10.1002/jbm.8202210082464601
]Search in Google Scholar
[
5. Clark, R. F., Ghosh, K., Tonnesen, M. G, 2007: Tissue engineering for cutaneous wounds. J. Invest. Dermatol., 127, 5, 1018‒1029. DOI: 10.1038/sj.jid.5700715.10.1038/sj.jid.570071517435787
]Search in Google Scholar
[
6. Colak, B., Yormaz, S., Ece, I., Çalişir, A., Körez, K., Çınar, M., et al., 2022: Comparison of collagen granule dressing versus conventional dressing in patients with diabetic foot ulcer. Int. J. Low Extrem. Wounds, 21, 3, 279‒289. DOI: 10.1177/1534734620938988.10.1177/153473462093898832734790
]Search in Google Scholar
[
7. Ekaputra, A. K., Prestwich, G. D., Cool, S. M., Hutmacher, D. W., 2011: The three-dimensional vascularization of growth factor-releasing hybrid scaffold of poly (ɛ-caprolac-tone)/collagen fibers and hyaluronic acid hydrogel. Biomaterials, 32, 32, 8108‒8117. DOI: 10.1016/j.biomaterials.2011. 07.022.
]Search in Google Scholar
[
8. Hadjizadeh, A., Doillon, C. J., 2010: Directional migration of endothelial cells towards angiogenesis using polymer fibres in a 3D co-culture system. J. Tissue Eng. Regen. Med., 4, 7, 524‒531. DOI: 10.1002/term.269.10.1002/term.26920872739
]Search in Google Scholar
[
9. Jannesari, M., Varshosaz, J., Morshed, M., Zamani, M., 2011: Composite poly (vinyl alcohol)/poly(vinyl acetate) electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs. Int. J. Nanomed., 6, 993‒1003. DOI: 10.2147/IJN.S17595.10.2147/IJN.S17595312440321720511
]Search in Google Scholar
[
10. Junker, J. P., Kamel, R. A., Caterson, E. J., Eriksson, E., 2013: Clinical impact upon wound healing and inflammation in moist, wet, and dry environments. Adv. Wound Care, 2, 7, 348‒356. DOI: 10.1089/wound.2012.0412.10.1089/wound.2012.0412384286924587972
]Search in Google Scholar
[
11. Karimi, K., Odhav, A., Kollipara, R., Fike, J., Stanford, C., Hall, J. C., 2017: Acute cutaneous necrosis: a guide to early diagnosis and treatment. J. Cutan. Med. Surg., 21, 5, 425‒437. DOI: 10.1177/1203475417708164.10.1177/120347541770816428470091
]Search in Google Scholar
[
12. Lazarus, G. S., Cooper, D. M., Knighton, D. R., Margolis, D. J., Percoraro, R. E., Rodeheaver, G., et al., 1994: Definitions and guidelines for assessment of wounds and evaluation of healing. Wound Repair Regen., 2, 3, 165‒170. DOI: 10.1001/archderm.1994.01690040093015.10.1001/archderm.1994.01690040093015
]Search in Google Scholar
[
13. Leipziger, L. S., Glushko, V., DiBernardo, B., Shafaie, F., Noble, J., Nichols, J., et al., 1985: Dermal wound repair: role of collagen matrix implants and synthetic polymer dressings. J. Am. Acad. Dermatol., 12, 2, 409‒419. DOI: 10.1016/s0190-9622(85)80004-9.10.1016/S0190-9622(85)80004-9
]Search in Google Scholar
[
14. Lindley, L. E., Stojadinovic, O., Pastar, I., Tomic-Canic, M., 2016: Biology and biomarkers for wound healing. Plast. Reconstr. Surg., 138, 3, 18‒28. DOI: 10.1097/PRS.0000000 000002682.
]Search in Google Scholar
[
15. Lynn, A. K., Yannas, I. V., Bonfield, W., 2004: Antigenicity and immunogenicity of collagen. J. Biomed. Mater. Res. B Appl. Biomater., 71, 2, 343‒354. DOI: 10.1002/jbm.b.30096.10.1002/jbm.b.3009615386396
]Search in Google Scholar
[
16. Parenteau-Bareil, R., Gauvin, R., Berthod, F., 2010: Collagen-based biomaterials for tissue engineering applications. Materials, 3, 3, 1863‒1887. DOI: 10.3390/ma3031863.10.3390/ma3031863
]Search in Google Scholar
[
17. Parrish, W. R., Roides, B., 2017: Physiology of blood components in wound healing: an appreciation of cellular cooperativity in platelet rich plasma action. J. Exerc. Sports Orthop., 4, 1‒14. DOI: 10.15226/2374-6904/4/2/00156.10.15226/2374-6904/4/2/00156
]Search in Google Scholar
[
18. Pavletic, M. M., 2018: Basic principles of wound management. In Pavletic, M. M.: Atlas of Small Animal Wound Management and Reconstructive Surgery, 4th edn., John Wiley and Sons Inc., 32‒43.10.1002/9781119267539
]Search in Google Scholar
[
19. Rancan, F., Blume-Peytavi, U., Vogt, A., 2014: Utilization of biodegradable polymeric materials as delivery agents in dermatology. Clin. Cosmet. Investig. Dermatol., 7, 23‒34. DOI: 10.2147/CCID.S39559.10.2147/CCID.S39559389148824470766
]Search in Google Scholar
[
20. Rho, K. S., Jeong, L., Lee, G., Seo, B. M., Park, Y. J., Hong, S. D., et al., 2006: Electrospinning of collagen nanofibers: effects on the behaviour of normal human keratinocytes and early-stage wound healing. Biomaterials, 27, 8, 1452‒1461. DOI: 10.1016/j.biomaterials.2005.08.004.10.1016/j.biomaterials.2005.08.00416143390
]Search in Google Scholar
[
21. Rubio-Elizalde, I., Bernáldez-Sarabia, J., Moreno-Ulloa, A., Vilanova, C., Juárez, P., Licea-Navarro, et al., 2019: Scaffolds based on alginate-PEG methyl ether methacrylate-Moringa oleifera-Aloe vera for wound healing applications. Carbohydr. Polym., 206, 455‒467. DOI: 10.1016/j. carbpol.2018.11.027.
]Search in Google Scholar
[
22. Ruszczak, Z., 2003: Effect of collagen matrices on dermal wound healing. Adv. Drug Deliv. Rev., 55, 12, 1595‒1611. DOI: 10.1016/j.addr.2003.08.003.10.1016/j.addr.2003.08.00314623403
]Search in Google Scholar
[
23. Sanon, S., Hart, D. A., Tredget, E. E., 2016: Molecular and cellular biology of wound healing and skin regeneration. In Albanna, M. Z., Holmes, J. H. (Eds.): Skin Tissue Engineering and Regenerative Medicine, Elsevier Inc., New York, 19‒47.10.1016/B978-0-12-801654-1.00002-4
]Search in Google Scholar
[
24. Schlegel, A. K., Möhler, H., Busch F., Mehl, A., 1997: Pre-clinical and clinical studies of a collagen membrane (Bio-Gide). Biomaterials, 18, 7, 535‒538. DOI: 10.1016/s0142-96 12(96)00175-5.
]Search in Google Scholar
[
25. Stupack, D. G., 2005: Integrins as a distinct subtype of dependence receptors. Cell Death Differentiation, 12, 8, 1021‒1030. DOI: 10.1038/sj.cdd.4401658.10.1038/sj.cdd.440165815933741
]Search in Google Scholar
[
26. Talikowska, M., Fu, X., Lisak, G., 2019: Application of conducting polymers to wound care and skin tissue engineering: A review. Biosens. Bioelectron., 135, 50‒63. DOI: 10.1016/j. bios.2019.04.001.
]Search in Google Scholar
[
27. Veves, A., Sheehan, P., Pham, H. T., 2002: A randomized, controlled trial of Promogran (a collagen/oxidized regenerated cellulose dressing) vs standard treatment in the management of diabetic foot ulcers. Arch. Surg., 137, 7, 822‒827. DOI: 10.1001/archsurg.137.7.822.10.1001/archsurg.137.7.82212093340
]Search in Google Scholar
[
28. Wang, X., Cheng, F., Liu, J., Smått, J. H., Gepperth, D., Lastusaari, M., et al., 2016: Biocomposites of copper-containing mesoporous bioactive glass and nanofibrillated cellulose: Biocompatibility and angiogenic promotion in chronic wound healing application. Acta Biomater., 46, 286‒298. DOI: 10.1016/j.actbio.2016.09.021.10.1016/j.actbio.2016.09.02127646503
]Search in Google Scholar
[
29. Williams, J., 2009: Decision making in wound closure. In Williams, J. M., Moores, A.: BSAVA Manual of Canine and Feline Wound Management and Reconstruction, 2nd edn., Wiley Blackwell, Hoboken, NJ, 25‒36.10.22233/9781905319558.3
]Search in Google Scholar
[
30. Yannas, I. V., 1990: Biologically active analogues of the extracellular matrix: artificial skin and nerves. Angew. Chem. Int. Ed. Engl., 29, 1, 20‒35. DOI: 10.1002/anie.199000201.10.1002/anie.199000201
]Search in Google Scholar