1. bookVolume 29 (2021): Edizione 4 (December 2021)
Dettagli della rivista
License
Formato
Rivista
eISSN
1898-9934
Prima pubblicazione
09 Jun 2008
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Accesso libero

Prime Representing Polynomial

Pubblicato online: 09 Jul 2022
Volume & Edizione: Volume 29 (2021) - Edizione 4 (December 2021)
Pagine: 221 - 228
Accettato: 30 Nov 2021
Dettagli della rivista
License
Formato
Rivista
eISSN
1898-9934
Prima pubblicazione
09 Jun 2008
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17. Apri DOISearch in Google Scholar

[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.604425130069070 Apri DOISearch in Google Scholar

[3] Yuichi Futa, Hiroyuki Okazaki, Daichi Mizushima, and Yasunari Shidama. Gaussian integers. Formalized Mathematics, 21(2):115–125, 2013. doi:10.2478/forma-2013-0013. Apri DOISearch in Google Scholar

[4] James P. Jones. Diophantine representation of Mersenne and Fermat primes. Acta Arithmetica, 35:209–221, 1979. doi:10.4064/AA-35-3-209-221. Apri DOISearch in Google Scholar

[5] James P. Jones. Universal diophantine equation. Journal of Symbolic Logic, 47(4):549–571, 1982.10.2307/2273588 Search in Google Scholar

[6] James P. Jones, Sato Daihachiro, Hideo Wada, and Douglas Wiens. Diophantine representation of the set of prime numbers. The American Mathematical Monthly, 83(6):449–464, 1976.10.1080/00029890.1976.11994142 Search in Google Scholar

[7] Yuri Matiyasevich. Primes are nonnegative values of a polynomial in 10 variables. Journal of Soviet Mathematics, 15:33–44, 1981. doi:10.1007/BF01404106. Apri DOISearch in Google Scholar

[8] Yuri Matiyasevich and Julia Robinson. Reduction of an arbitrary diophantine equation to one in 13 unknowns. Acta Arithmetica, 27:521–553, 1975.10.4064/aa-27-1-521-553 Search in Google Scholar

[9] Karol Pąk. The Matiyasevich theorem. Preliminaries. Formalized Mathematics, 25(4): 315–322, 2017. doi:10.1515/forma-2017-0029. Apri DOISearch in Google Scholar

[10] Karol Pąk. Diophantine sets. Part II. Formalized Mathematics, 27(2):197–208, 2019. doi:10.2478/forma-2019-0019. Apri DOISearch in Google Scholar

[11] Karol Pąk. Formalization of the MRDP theorem in the Mizar system. Formalized Mathematics, 27(2):209–221, 2019. doi:10.2478/forma-2019-0020. Apri DOISearch in Google Scholar

[12] Christoph Schwarzweller. Proth numbers. Formalized Mathematics, 22(2):111–118, 2014. doi:10.2478/forma-2014-0013. Apri DOISearch in Google Scholar

[13] Zhi-Wei Sun. Further results on Hilbert’s Tenth Problem. Science China Mathematics, 64:281–306, 2021. doi:10.1007/s11425-020-1813-5. Apri DOISearch in Google Scholar

[14] Rafał Ziobro. Prime factorization of sums and differences of two like powers. Formalized Mathematics, 24(3):187–198, 2016. doi:10.1515/forma-2016-0015. Apri DOISearch in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo