Accesso libero

Significant phenological response of forest tree species to climate change in the Western Carpathians

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Allen, C. D., Breshears, D. D., McDowell, N. G., 2015: On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere, 6:1–55. Search in Google Scholar

Bartík, M., Sitko, R., Oreňák, M., Slovik, J., Škvarenina, J., 2014: Snow accumulation and ablation in disturbed mountain spruce forest in West Tatra Mts. Biologia, 69:1492–1501. Search in Google Scholar

Bigler, C., Vitasse, Y., 2021: Premature leaf discoloration of European deciduous trees is caused by drought and heat in late spring and cold spells in early fall. Agricultural and Forest Meteorology, 307:108492. Search in Google Scholar

Bose, A. K., Scherrer, D., Camarero, J. J., Ziche, D., Babst, F., Bigler, Ch. et al., 2021: Climate sensitivity and drought seasonality determine post-drought growth recovery of Quercus petraea and Quercus robur in Europe. Science of the Total Environment, 784:147222. Search in Google Scholar

Bošeľa, M., 2010: Climatic and soil characteristics of the altitudinal vegetation zones and edaphic-trophic units. Central European Forestry Journal, 56:215–234. Search in Google Scholar

Braslavská, O., Kamenský, L., 1996: Fenologické pozorovanie lesných rastlín. Metodický predpis. Bratis-lava, SHMÚ, 22 p. (In Slovak). Search in Google Scholar

Bréda, N., Huc, R., Granier, A., Dreyer, E., 2006: Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Annals of Forest Science, 63:625–644. Search in Google Scholar

Bucha, T., Koreň, M., 2017: Phenology of the beech forests in the Western Carpathians from MODIS for 2000–2015. iForest – Biogeosciences and Forestry, 10:537–546. Search in Google Scholar

Bucha, T., Koren, M., Sitková, Z., Pavlendová, H., Snopková, Z., 2023: Trends and driving forces of spring phenology of oak and beech stands in the Western Carpathians from MODIS times series 2000–2021. iForest – Biogeosciences and Forestry, 16:334–344. Search in Google Scholar

Camarero, J. J., Gazol, A., Cantero, A., Granda, E., Ibáñez, R., 2018: Forest Growth Responses to Drought at Short- and Long-Term Scales in Spain: Squeezing the Stress Memory from Tree Rings. Frontiers in Ecology and Evolution, 6:329909. Search in Google Scholar

Čehulić, I., Sever, K., Katičić Bogdan, I., Jazbec, A., Škvorc, Ž., Bogdan, S., 2019: Drought Impact on Leaf Phenology and Spring Frost Susceptibility in a Quercus robur L. Provenance Trial. Forests, 10:50. Search in Google Scholar

Chen, L., Huang, J. G., Ma, O., Hänninen, H., Rossi, S., Piao S. et al., 2018: Spring phenology at different altitudes is becoming more uniform under global warming in Europe. Global Change Biology, 24:3969–3975. Search in Google Scholar

Chmielewski, F. M., Rötzer, T., 2001: Response of tree phenology to climate change across Europe. Agriculture and Forest Meteorology, 108:101–112. Search in Google Scholar

Chuchma, F., Středová, H., Středa, T., 2016: Bioindication of climate development on the basis of long-term phenological observation. In: Polak, O., Cerkal, R., Belcredi, N. B., Horky, P., Vacek, P. (eds.): Proceedings of international PhD students conference – MendelNet 2016, Brno, Mendel University, p. 380–383. Search in Google Scholar

Ciceu, A., Popa, I., Leca, S., Pitar, D., Chivulescu, S., Badea, O., 2020: Climate change effects on tree growth from Romanian forest monitoring Level II plots. Science of the Total Environment, 698:134129. Search in Google Scholar

Csilléry, K., Buchmann, N., Fady, B., 2020: Adaptation to drought is coupled with slow growth, but independent from phenology in marginal silver fir (Abies alba Mill.) populations. Evolutionary Applications, 13:2357–2376. Search in Google Scholar

Čufar, K., Luis, M. D., Saz, M. A., Črepinšek, Z., Kajfež-Bogataj, L., 2012: Temporal shifts in leaf phenology of beech (Fagus sylvatica) depend on elevation. Trees, 26:1091–1100. Search in Google Scholar

Didion-Gency, M., Vitasse, Y., Buchmann, N., Gessler, A., Gisler, J., Schaub, M. et al., 2023: Chronic warming and dry soils limit carbon uptake and growth despite a longer growing season in beech and oak. Plant Physiology, 194: 741–757. Search in Google Scholar

Dittmar, C., Elling, W., 2006: Phenological phases of common beech (Fagus sylvatica L.) and their dependence on region and altitude in Southern Germany. European Journal of Forest Research, 125:181–188. Search in Google Scholar

Dolschak, K., Gartner, K., Berger, T. W., 2019: The impact of rising temperatures on water balance and phenology of European beech (Fagus sylvatica L.) stands. Modeling Earth Systems and Environment, 5:1347–1363. Search in Google Scholar

Eaton, E., Caudullo, G., Oliveira, S., de Rigo, D., 2016. Quercus robur and Quercus petraea in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (eds.): European Atlas of Forest Tree Species. Luxembourg, Publ. Off. EU, p. e01c6df+. Search in Google Scholar

Estrella, N., Menzel, A., 2006: Responses of leaf colouring in four deciduous tree species to climate and weather in Germany. Climate Research, 32:253–267. Search in Google Scholar

Filippo, A. D., Biondi, F., Čufar, K., Luis, M. D., Grabner, M., Maugeri, M. et al., 2007: Bioclimatology of beech (Fagus sylvatica L.) in the Eastern Alps: Spatial and altitudinal climatic signals identified through a tree-ring network. Journal of Biogeography, 34:1873–1892. Search in Google Scholar

Frei, E. R., Gossner, M. M., Vitasse, Y., Queloz, V., Dubach, V., Gessler, A. et al., 2022: European beech dieback after premature leaf senescence during the 2018 drought in northern Switzerland. Plant Biology (Stuttgart, Germany), 24:1132–1145. Search in Google Scholar

Fu, Y. H., Piao, S., Cong, N., Zhao, H., Zhang, Y., Menzel, A. et al., 2014: Recent spring phenology shifts in western Central Europe based on multiscale observations. Global Ecology and Biogeography, 23:1255–1263. Search in Google Scholar

Geßler, A., Keitel, C., Kreuzwieser, J., Matyssek, R., Seiler, W., Rennenberg, H., 2007: Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees, 21:1–11. Search in Google Scholar

Guyon, D., Guillot, M., Vitasse, Y., Cardot, H., Hagolle, O., Delzon, S. et al., 2011: Monitoring elevation variations in leaf phenology of deciduous broadleaf forests from SPOT/VEGETATION time-series. Remote Sensing of Environment, 115:615–627. Search in Google Scholar

Hájková, L., Kožnarová, V., Sulovská, S., Richterová D., 2012: The temporal and spatial variability of pheno-logical phases of the Norway spruce (Picea abies [L.] Karsten) in the Czech Republic. Folia Oecologica, 39:10–20. Search in Google Scholar

Hartl-Meier, C., Dittmar, C., Zang, C., Rothe, A., 2014: Mountain forest growth response to climate change in the Northern Limestone Alps. Trees, 28:819–829. Search in Google Scholar

Harvey, J. E., Smiljanić, M., Scharnweber, T., Buras, A., Cedro, A., Cruz-García, R. et al., 2020: Tree growth influenced by warming winter climate and summer moisture availability in northern temperate forests. Global Change Biology, 26:2505–2518. Search in Google Scholar

Hlásny, T., Mátyás, C., Seidl, R., Kulla, L., Merganičová, K., Trombik, J. et al., 2014: Climate change increases the drought risk in Central European forests: What are the options for adaptation? Lesnícky časopis– Forestry Journal, 60:5–18. Search in Google Scholar

Hlôška, L., Saniga, M., Chovancová, G., Chovancová, B., Homolová, Z., 2022: Temporal and spatial changes in small mammal communities in a disturbed mountain forest. Folia Oecologica, 49:9–22. Search in Google Scholar

Hwang, T., Song, C., Vose, J. M., 2011: Topography-mediated controls on local vegetation phenology estimated from MODIS vegetation index. Landscape Ecology, 26:541–556. Search in Google Scholar

Kolářová, E., Nekovář, J., Adamík, P., 2014: Long-term temporal changes in central European tree phenology (1946−2010) confirm the recent extension of growing seasons. International Journal of Biometeorology, 58:1739–1748. Search in Google Scholar

Krejza, J., Cienciala, E., Světlík, J., Bellan, M., Noyer, E., Horáček, P. et al., 2021: Evidence of climate-induced stress of Norway spruce along elevation gradient preceding the current dieback in Central Europe. Trees, 35:103–119. Search in Google Scholar

Kubov, M., Schieber, B., Janík, R., 2022: Effect of Selected Meteorological Variables on Full Flowering of Some Forest Herbs in the Western Carpathians. Atmosphere, 13:195. Search in Google Scholar

Lukasová, V., Bucha, T., Škvareninová, J., Škvarenina, J., 2019: Validation and application of European beech phenological metrics derived from MODIS data along an altitudinal gradient. Forests, 10:60. Search in Google Scholar

Lukasová, V., Vido, J., Škvareninová, J., Bičárová, S., Hlavatá, H., Borsányi, P. et al., 2020: Autumn phenological response of European beech to summer drought and heat. Water, 12:2610. Search in Google Scholar

Lukasová, V., Škvareninová, J., Bičárová, S., Sitárová, Z., Hlavatá, H., Borsányi, P. et al., 2021a: Regional and altitudinal aspects in summer heatwave intensification in the Western Carpathians. Theoretical and Applied Climatology, 146:1111–1125. Search in Google Scholar

Lukasová, V., Bucha, T., Mareková, Ľ., Buchholcerová, A., Bičárová, S., 2021b: Changes in the greenness of mountain pine (Pinus mugo Turra) in the subalpine zone related to the winter climate. Remote Sensing, 13:1788. Search in Google Scholar

Lukasová, V., Bičárová, S., Buchholcerová, A., Adamčíková, K., 2022: Low sensitivity of Pinus mugo to surface ozone pollution in the subalpine zone of continental Europe. International Journal of Biometeorology, 66:2311–2324. Search in Google Scholar

Mátyás, C., Berki, I., Czúcz, B., Gálos, B., Móricz, N., Rastovits, E., 2010: Future of Beech in Southeast Europe from the Perspective of Evolutionary Ecology. Acta Silvatica et Lignaria Hungarica, 6:91–110. Search in Google Scholar

Mátyás, C., Beran, F., Dostál, J., Čáp, J., Fulín, M., Vejpustková, M. et al., 2021: Surprising drought tolerance of Fir (Abies) species between past climatic adaptation and future projections reveals new chances for adaptive forest management. Forests, 12:821. Search in Google Scholar

Mayr, S., Schmid, P., Rosner, S., 2019: Winter embolism and recovery in the conifer shrub Pinus mugo L. Forests, 10:941. Search in Google Scholar

Meier, U., 2001: Growth stages of mono and dicotyledonous plants. BBCH Monograph. Bonn, Federal Biological Research Centre for Agriculture and Forestry. Available at https://www.politicheagricole.it/flex/AppData/WebLive/Agrometeo/MIEPFY800/BBCHengl2001.pdf. Search in Google Scholar

Meier, M., Vitasse, Y., Bugmann, H., Bigler, C., 2021: Phenological shifts induced by climate change amplify drought for broad-leaved trees at low elevations in Switzerland. Agricultural and Forest Meteorology, 307:108485. Search in Google Scholar

Menzel, A., Estrella, N., Fabian, P., 2001: Spatial and temporal variability of the phenological seasons in Germany from 1951 to 1996. Global Change Biology, 7:657–666. Search in Google Scholar

Menzel, A., 2003: Plant phenological anomalies in Germany and their relation to air temperature and NAO. Climate Change, 57:243–263. Search in Google Scholar

Menzel, A., Sparks, T. H., Estrella, N., Koch, E., Aasa, A., Ahas, R. et al., 2006: European phenological response to climate change matches the warming pattern. Global Change Biology, 12:1969–1976. Search in Google Scholar

Mészáros, J., Halaj, M., Polčák, N., Onderka, M., 2022: Mean annual totals of precipitation during the period 1991–2015 with respect to cyclonic situations in Slovakia. Idöjárás – Quarterly journal of the Hungarian meteorological servece, 126:267–284. Search in Google Scholar

Mezei, P., Jakuš, R., Pennerstorfer, J., Havašová, M., Škvarenina, J., Ferenčík, J. et al., 2017: Storms, temperature maxima and the Eurasian spruce bark beetle Ips typographus – an infernal trio in Norway spruce forests of the Central European High Tatra Mountains. Agricultural and Forest Meteorology, 242:85–95. Search in Google Scholar

Mezei, P., Fleischer, P., Rozkošný, J., Kurjak, D., Dzurenko, M., Rell, S. et al., 2022: Weather conditions and host characteristic drive infestations of sessile oak (Quercus petrea) trap trees by oak bark beetle (Scolytus intricatus). Forest Ecology and Management, 503:119775. Search in Google Scholar

Mihai, G., Alexandru, A. M., Stoica, E., Birsan, M. V., 2021: Intraspecific growth response to drought of Abies alba in the Southeastern Carpathians. Forests, 12:387. Search in Google Scholar

Minďáš, J., Lapin, M., Škvarenina, J., 1996: Klimatické zmeny a lesy Slovenska. In: Národný klimatický program SR. Bratislava, MŽP SR, 5, 96 p. (In Slovak). Search in Google Scholar

Obladen, N., Dechering, P., Skiadaresis, G., Tegel, W., Keßler, J., Höllerl, S. et al., 2021: Tree mortality of European beech and Norway spruce induced by 2018–2019 hot droughts in central Germany. Agricultural and Forest Meteorology, 307:108482. Search in Google Scholar

Petrik, P., Petek-Petrik, A., Kurjak, D., Mukarram, M., Klein, T., Gömöry, D. et al., 2022: Interannual adjustments in stomatal and leaf morphological traits of European beech (Fagus sylvatica L.) demonstrate its climate change acclimation potential. Plant Biology, 24:1287–1296. Search in Google Scholar

Piao, S. L., Liu, Q., Chen, A. P., Janssens, I. A., Fu, Y., Dai, J. et al., 2019: Plant phenology and global climate change: Current progresses and challenges. Global Change Biology, 25:1922–1940. Search in Google Scholar

Reid, P. C., Hari, R. E., Beaugrand, G., Livingstone, D. M., Marty, Ch., Straileet, D. et al., 2016: Global impacts of the 1980s regime shift. Global Change Biology, 22:682–703. Search in Google Scholar

Richardson, A. D., Keenan, T. F., Migliavacca, M., Ryu, Y., Sonnentag, O., Toomey M., 2013: Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology, 169:156–173. Search in Google Scholar

Richardson, A. D., Hufkens, K., Milliman, T., Aubrecht, D. M., Chen, M., Gray, J. M. et al., 2018: Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery. Scientific Data, 5:180028. Search in Google Scholar

Rukh, S., Sanders, T. G., Krüger, I., Schad, T., Bolte, A., 2023: Distinct responses of European beech (Fagus sylvatica L.) to drought intensity and length – A review of the impacts of the 2003 and 2018–2019 drought events in Central Europe. Forests, 14:248. Search in Google Scholar

de Sauvage, J. C., Vitasse, Y., Meier, M., Delzon, S., Bigler, C., 2022: Temperature rather than individual growing period length determines radial growth of sessile oak in the Pyrenees. Agricultural and Forest Meteorology, 317:108885. Search in Google Scholar

SHMI, 2015: Climate Atlas of Slovakia. Bratislava, Slovak Hydrometeorological Institute, 132 p. Search in Google Scholar

Schneider, S. H., 1997: Laboratory Earth. London, The Orion Publishing Group, 166 p. Search in Google Scholar

Schuldt, B., Buras, A., Arend, M., Vitasse, Y., Beierkuhnlein, C., Damm, A. et al., 2020: A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic and Applied Ecology, 45:86–103. Search in Google Scholar

Sippel, S., Fischer, E. M., Scherrer, S. C., Meinshausen, N., Knutti, R., 2020: Late 1980s abrupt cold season temperature change in Europe consistent with circulation variability and long-term warming. Environmental Research Letters, 15:094056. Search in Google Scholar

Svystun, T., Lundströmer, J., Berlin, M., Westin, J., Jönsson, A. M., 2021: Model analysis of temperature impact on the Norway spruce provenance specific bud burst and associated risk of frost damage. Forest Ecology and Management, 493:119252. Search in Google Scholar

Škvareninová, J., Babálová, D., Valach, J., Snopková, Z., 2017: Impact of temperature and wetness of summer months on autumn vegetative phenological phases of selected species in Fageto-Quercetum in the years 2011–2015. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 65:939–946. Search in Google Scholar

Škvareninová, J., Lukasová, V., Borsányi, P., Kvas, A., Vido, J., Štefková, J. et al., 2022: The effect of climate change on spring frosts and flowering of Crataegus laevigata – The indicator of the validity of the weather lore about “The Ice Saints”. Ecological Indicators, 145:109688. Search in Google Scholar

Středa, T., Litchmann, T., Středová, H., 2015: Relationship between tree bark surface temperature and selected meteorological elements. Contributions to Geophysics and Geodesy, 45:299–311. Search in Google Scholar

Středová, H., Fukalová, P., Chuchma, F., Středa, T., 2020: A complex method for estimation of multiple abiotic hazards in forest ecosystems. Water, 12:2872. Search in Google Scholar

Šustek, Z., Vido, J., Škvareninová, J., Škvarenina, J., Šurda, P., 2017: Drought impact on ground beetle assemblages (Coleoptera, Carabidae) in Norway spruce forests with different management after windstorm damage – a case study from Tatra Mts. (Slovakia). Journal of Hydrology and Hydromechanics, 65:333–342. Search in Google Scholar

Thompson, L. G., 2010: Climate Change: The evidence and our options. The Behavior Analyst, 33:153–170. Search in Google Scholar

Thornthwaite, C. W., 1948: An approach toward a rational classification of climate. Geographical Review, 38:55–94. Search in Google Scholar

Thurm, E. A., Hernandez, L., Baltensweiler, A., Ayan, S., Rasztovits, E., Bielak, K. et al., 2018: Alternative tree species under climate warming in managed European forest, Forest Ecology and Management, 430:485–497. Search in Google Scholar

Trnka, M., Balek, J., Štěpánek, P., Zahradníček, P., Možný, M., Eitzingeret, J. et al., 2016: Drought trends over part of Central Europe between 1961 and 2014. Climate Research, 70:143–160. Search in Google Scholar

Vaneková, Z., Vanek, M., Škvarenina, J., Nagy, M., 2020: The influence of local habitat and microclimate on the levels of secondary metabolites in Slovak bilberry (Vaccinium myrtillus L.) fruits. Plants, 9:436. Search in Google Scholar

Vicente-Serrano, S. M., Beguería, S., López-Moreno, J. I., 2010: A Multi-scalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index – SPEI. Journal of Climate, 23:1696. Search in Google Scholar

Vitali, V., Büntgen, U., Bauhus, J., 2017: Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south-western Germany. Global Change Biology, 23:5108–5119. Search in Google Scholar

Vitasse, Y., Delzon, S., Dufrene, E., Pontiller, J. Y., Louvet, J. M., Kremer, A. et al., 2009: Leaf phenology sensitivity to temperature in European trees: Do within-species populations exhibit similar responses? Agricultural and Forest Meteorology, 149:735–744. Search in Google Scholar

Vitasse, Y., Schneider, L., Rixen, C., Christen, D., Rebetez, M., 2018: Increase in the risk of exposure of forest and fruit trees to spring frosts at higher elevations in Switzerland over the last four decades. Agricultural and Forest Meteorology, 248:60–69. Search in Google Scholar

Xie, Y. Y., Wang, X. J., Wilson, A. M., Silander, J. A., 2018: Predicting autumn phenology: how deciduous tree species respond to weather stressors. Agricultural and Forest Meteorology, 250:127–137. Search in Google Scholar

Zlatník, A., 1960: Waldtypengruppen der Slowakei. Brno: Wiss. Laboratorium, 195 p. (In German). Search in Google Scholar

Zlatník, A., 1976: Přehled skupin typů geobiocénů původně lesních a křovinných ČSSR. Zprávy Geografického ústavu České akademie věd, 13:55–64. (In Czech). Search in Google Scholar

eISSN:
2454-0358
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Plant Science, Ecology, other