Accesso libero

Soil drought stress and high-temperature effects on photosystem II in different juvenile spruce provenances

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Aitken, S. N., Yeaman, S., Holliday, J. A., Wang, T., Curtis-McLane, S., 2008: Adaptation, migration or extirpation: climate change outcomes for tree populations. Evolutionary Applications, 1:95–111. Search in Google Scholar

Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M. et al., 2010: A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259:660–684. Search in Google Scholar

Baker, N. R., 2008: Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo. Annual Review of Plant Biology, 59:89–113. Search in Google Scholar

Berry J., Björkman, O., 1980: Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology, 31:491–543. Search in Google Scholar

Bigras, F. J., 2000: Selection of white spruce families in the context of climate change: heat tolerance. Tree Physiology, 20:1227–1234. Search in Google Scholar

Brestic, M., Zivcak, M., 2013: PSII Fluorescence Techniques for Measurement of Drought and High Temperature Stress Signal in Crop Plants: Protocols and Applications. In: Rout, G. R., Das Bandhu, A. (eds.): Molecular Stress Physiology of Plants, Springer India, New Delhi, p. 87–131. Search in Google Scholar

Bussotti, F., Pollastrini, M., Holland, V., Brüggemann, W., 2015: Functional traits and adaptive capacity of European forests to climate change. Environmental and Experimental Botany, 111:91–113. Search in Google Scholar

Bussotti, F., Gerosa, G., Digrado, A., Pollastrini, M., 2020: Selection of chlorophyll fluorescence parameters as indicators of photosynthetic efficiency in large scale plant ecological studies. Ecological Indicators, 108:105686. Search in Google Scholar

Cook, B. I., Mankin, J. S, Williams, A. P, Marvel, K. D., Smerdon, J. E., Liu, H., 2021: Uncertainties, limits, and benefits of climate change mitigation for soil moisture drought in Southwestern North America. Earth’s Future: 9:e2021EF002014. Search in Google Scholar

Critchley, C., 1998: Photoinhibition. In: Raghavendra, A. S. (ed.): Photosynthesis: A Comprehensive Treatise. Cambridge University Press, Cambridge, p. 264–272. Search in Google Scholar

Demmig-Adams, B., Adams III, W. W., 1996: Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species. Planta, 198:460–470. Search in Google Scholar

Eriksson, M., Neuvonen, S. Roininen, H., 2007: Retention of wind-felled trees and the risk of consequential tree mortality by the European spruce bark beetle Ips typographus in Finland. Scandinavian Journal of Forest Research, 22:516–523. Search in Google Scholar

Fick, S. E., Hijmans, R. J., 2017: WorldClim 2: new 1–km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37:4302–4315. Search in Google Scholar

Führer, E., Horváth, L., Jagodics, A., Machon, A., Szabados, I., 2011: Application of a new aridity index in Hungarian forestry practice. Időjárás, 115:205–116. Search in Google Scholar

Goltsev, V., Zaharieva, I., Chernev, P., Kouzmanova, M., Kalaji, H. M., Yordanov, I. et al., 2012: Drought-induced modifications of photosynthetic electron transport in intact leaves: Analysis and use of neural networks as a tool for a rapid non-invasive estimation. Biochimica et Biophysica Acta, 1817:1490–1498. Search in Google Scholar

Gömöry, D., Longauer, R., Hlásny, T., Pacalaj, M., Strmeň, S., Krajmerová, D., 2012: Adaptation to common optimum in different populations of Norway spruce (Picea abies Karst.). European Journal of Forest Research, 131:401–411. Search in Google Scholar

Gömöry, D., Longauer, R., Krajmerová, D., 2015. Choice of forest reproductive material under conditions of climate change. Lesnícky časopis – Forestry Journal, 61:124–130. Search in Google Scholar

Henry, C., John, G. P., Pan, R., Bartlett, M. K., Fletcher, L. R., Scoffoni, C. et al., 2019: A stomatal safety-efficiency trade-off constrains responses to leaf dehydration. Nature Communications, 10:3398. Search in Google Scholar

Hentschel, R., Rosner, S., Kayler, Z. E., Andreassen, K., Børja, I., Solberg, S. et al., 2014: Norway spruce physiological and anatomical predisposition to die-back. Forest Ecology and Management, 322:27–36. Search in Google Scholar

Hlásny, T., Turčáni, M., 2013: Persisting bark beetle outbreak indicates the unsustainability of secondary Norway spruce forests: case study from Central Europe. Annals of Forest Science, 70:481–491. Search in Google Scholar

Húdoková, H., Petrík, P., Petek-Petrik, A., Konôpková, A., Leštianska, A., Střelcová, K. et al., 2022: Heat-stress response of photosystem II in five ecologically important tree species of European temperate forests. Biologia, 77:3. Search in Google Scholar

Jamnická, G., Fleischer, P., Jr., Konôpková, A., Pšidová, E., Kučerová, J., Kurjak, D. et al., 2019: Norway Spruce (Picea abies L.) Provenances Use Different Physiological Strategies to Cope with Water Deficit. Forests, 10:651. Search in Google Scholar

Kalaji, H. M., Goltsev, V., Bosa, K., Allakhverdiev, S. I., Strasser, R. J., Govindjee, 2012: Experimental in vivo measurements of light emission in plants: A perspective dedicated to David Walker. Photosynthesis Research, 114:69–96. Search in Google Scholar

Kalaji, H. M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I. A. et al., 2016: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologicae Plantarum, 38:102. Search in Google Scholar

Kalaji, H. M., Schansker, G., Brestic, M., Bussotti, F., Calatayud, A., Ferroni, L. et al., 2017: Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynthetic Research, 132:13–66. Search in Google Scholar

Kapeller, S., Lexer, M. J., Geburek, T., Hiebl, J., Schueler, S., 2012: Intraspecific variation in climate response of Norway spruce in the eastern Alpine range: Selecting appropriate provenances for future climate. Forest Ecology and Management, 271:46–57. Search in Google Scholar

Konôpková, A., Húdoková, H., Ježík, M., Kurjak, D., Jamnická, G., Ditmarová, Ľ. et al., 2020: Special issue in honour of Prof. Reto J. Strasser – Origin rather than mild drought stress influenced chlorophyll a fluorescence in contrasting silver fir (Abies alba Mill.) provenances. Photosynthetica, 58:549–559. Search in Google Scholar

Kunert, N., 2020: Preliminary indications for diverging heat and drought sensitivities in Norway spruce and Scots pine in Central Europe. iForest, 13:8991. Search in Google Scholar

Kunert, N., Hajek, P., Hietz, P., Morris, H., Rosner, S., Tholen, D., 2022: Summer temperatures reach the thermal tolerance threshold of photosynthetic decline in temperate conifers. Plant Biology, 24:1254–1261. Search in Google Scholar

Lambers, H., Oliveira, R. S., 2019: Life cycles: environmental influences and adaptations, In: Plant Physiological Ecology. Cham, Springer, p. 451–486. Search in Google Scholar

Lindner, M., Fitzgerald, J. B., Zimmermann, N. E., Reyer, C., Delzon, S., van Der Maaten, E., 2014: Climate change and European forests: what do we know, what are the uncertainties, and what are the implications for forest management? Journal of Environmental Management, 146: 69–83. Search in Google Scholar

Lu, C., Zhang, J., 1999: Effects of water stress on photosystem II photochemistry and its thermostability in wheat plants. Journal of Experimental Botany, 50:1199–1206. Search in Google Scholar

Maier, C. R., Chen, Z. H., Cazzonelli, C. I., Tissue, D. T., Ghannoum, O., 2022: Precise Phenotyping for Improved Crop Quality and Management in Protected Cropping: A Review. Crops, 2:336–350. Search in Google Scholar

Marešová, J., Húdoková, H., Sarvašová, L., Fleischer, P., Ditmarová, Ľ., Blaženec, M. et al., 2022: Dynamics of internal isoprenoid metabolites in young Picea abies (Norway spruce) shoots during drought stress conditions in springtime. Phytochemistry, 203:113414. Search in Google Scholar

Mathur, S., Agrawal, D., Jajoo, A., 2014: Photosynthesis: Response to high-temperature stress. Journal of Photochemistry and Photobiology B: Biology, 137:116–126. Search in Google Scholar

Münchinger, I. K., Hajek, P., Akdogan, B., Caicoya, A. T., Kunert, N., 2023: Leaf thermal tolerance and sensitivity of temperate tree species are correlated with leaf physiological and functional drought resistance traits. Journal of Forest Research, 34:63–76. Search in Google Scholar

Noor, H., Sun, M., Algwaiz, H. I. M., Sher, A., Fiaz, S., Attia, K. A. et al., 2022: Chlorophyll fluorescence and grain filling characteristic of wheat (Triticum aestivum L.) in response to nitrogen application level. Molecular Biology Reports, 49:7157–7172. Search in Google Scholar

Petrik, P., Petek-Petrik, A., Konôpková, A., Fleischer, P., Stojnic, S., Zavadilova, I. et al., 2023: Seasonality of PSII thermostability and water use efficiency of in situ mountainous Norway spruce (Picea abies). Journal of Forestry Research, 34:197–208. Search in Google Scholar

Petrík, P., Petek, A., Konôpková, A., Bosela, M., Fleischer, P., Frýdl, J., 2020: Stomatal and Leaf Morphology Response of European Beech (Fagus sylvatica L.) Provenances Transferred to Contrasting Climatic Conditions. Forests, 11:1359. Search in Google Scholar

Pšidová, E., Živčák, M., Stojnić, S., Orlović, S., Gömöry, D., Kučerová, J. et al., 2018: Altitude of origin influences the responses of PSII photochemistry to heat waves in European beech (Fagus sylvatica L.). Environmental and Experimental Botany, 152:97–106. Search in Google Scholar

Rehfeldt, G. E., Tchebakova, N. M., Parfenova, Y. I., Wykoff, W. R., Kuzmina, N. A., Milyutin L. I., 2002: Intraspecific responses to climate in Pinus sylvestris. Global Change Biology, 8:912–929. Search in Google Scholar

Robson, T. M., Garzón, M. B., Alia Miranda, R., Barba Egido, D., Bogdan, S., Borovics, A. et al., 2018: Phenotypic trait variation measured on European genetic trials of Fagus sylvatica L. Scientific Data, 5:180149. Search in Google Scholar

Salvucci, M. E., Crafts-Brandner, S. J., 2004: Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiologia Plantarum, 120:179–186. Search in Google Scholar

Schiop, S. T., Al Hassan, M., Sestras, A. F., Boscaiu, M., Sestras, R. E., Vicente, O., 2017: Biochemical responses to drought, at the seedling stage, of several Romanian Carpathian populations of Norway spruce (Picea abies [L.] Karst). Trees, 31:1479–1490. Search in Google Scholar

Strasser, R. J., Tsimilli-Michael, M., Srivastava, A., 2004: Analysis of the chlorophyll a fluorescence transient. – In: Papageorgiou, G. C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Dordrecht, Springer, p. 321–362. Search in Google Scholar

Suresh, K., 2020: Abiotic Stresses and Their Effects on Plant Growth, Yield and Nutritional Quality of Agricultural Produce. International Journal of the Science of Food and Agriculture, 4: 367–378. Search in Google Scholar

van Heerden, P. D. R., Swanepoel, J. W., Krüger, G. H. J., 2007: Modulation of photosynthesis by drought in two desert scrub species exhibiting C3-mode CO2 assimilation. Environmental and Experimental Botany, 61:124–136. Search in Google Scholar

Vastag, E., Orlović, S., Konôpková, A., Kurjak, D., Cocozza, C., Pšidová, E. et al., 2020: Magnolia grandiflora L. shows better responses to drought than Magnolia × soulangeana in urban environment. iForest, 13:75–583. Search in Google Scholar

Végh, B., Marček, T., Karsai, I., Janda, T., Darkó, É., 2018: Heat acclimation of photosynthesis in wheat genotypes of different origin. South African Journal of Botany, 117:184–192. Search in Google Scholar

Wang, G. P., Hui, Z., Li, F., Zhao, M. R., Zhang, J., Wang, W., 2010: Improvement of heat and drought photosynthetic tolerance in wheat by overaccumulation of glycinebetaine. Plant Biotechnology Reports, 4:213–222. Search in Google Scholar

Wang, X., Ingvarsson, P. K., 2023. Quantifying adaptive evolution and the effects of natural selection across the Norway spruce genome. Molecular Ecology, 32:5288–5304. Search in Google Scholar

Zavadilová, I., Szatniewska, J., Petrík, P., Mauer, O., Pokorný, R., Stojanović, M., 2023: Sap flow and growth response of Norway spruce under long-term partial rainfall exclusion at low altitude. Frontiers in Plant Science, 14:1089706. Search in Google Scholar

Zhang, H. B., Xu, D. Q., 2003: Role of light-harvesting complex 2 dissociation in protecting the photosystem 2 reaction centres against photodamage in soybean leaves and thylakoids. Photosynthetica, 41:383–391. Search in Google Scholar

Zhang, X., Chen, L., Wang, J., Wang, M., Yang, S., Zhao, Ch., 2018: Photosynthetic acclimation to long-term high temperature and soil drought stress in two spruce species (Picea crassifolia and P. wilsonii) used for afforestation. Journal of Forestry Research, 29:363–372. Search in Google Scholar

Zivcak, M., Brestic, M., Balatova, Z., Drevenakova, P., Olsovska, K., Kalaji, H. M. et al., 2013: Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Photosynthesis Research, 117:529–546. Search in Google Scholar

Zurek, G., Rybka, K., Pogrzeba, M., Krzyzak, J., Prokopiuk, K., 2014: Chlorophyll a fluorescence in evaluation of the effect of heavy metal soil contamination on perennial grasses. PLoS One, 9:e91475. Search in Google Scholar

Zivcak, M., Olsovska, K., Brestic, M., 2017: Photo-synthetic responses under harmful and changing environment: Practical aspects in crop research. In: Hou, H., Najafpour, M., Moore, G., Allakhverdiev, S. (eds.): Photosynthesis: Structures, Mechanisms, and Applications. Cham, Springer, p. 203–248. Search in Google Scholar

eISSN:
2454-0358
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Plant Science, Ecology, other