Accesso libero

Carbon stock in living biomass of Russian forests: new quantification based on data from the first cycle of the State Forest Inventory

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Adolt, R., Kučera, M., 2021: Pracovní postupy terénního šetření Sledování stavu a vývoje lesních ekosystémů (2016–2020). Brandýs nad Labem, Ústav pro hospodářskou úpravu lesů Brandýs nad Labem (ÚHÚL), 664 p. (In Czech).Search in Google Scholar

Alexeyev, V. A., Birdsey, R. A., 1998: Carbon storage in forests and peatlands of Russia. General Technical Report NE-244. Radnor, USDA Forest Service. Radnor, Northeastern Forest Experiment Station, 137 p.Search in Google Scholar

Alekseev, A., Tomppo, E., McRoberts, R. E., von Gadow, K., 2019: A constructive review of the State Forest Inventory in the Russian Federation. Forest Ecosystems, 6:9.Search in Google Scholar

Bastos, A., Ciais, P., Sitch, S., Aragão, L. E. O., Chevallier, F., Fawcett, D. et al., 2022: On the use of Earth Observation to support estimates of national greenhouse gas emissions and sinks for the Global stock-take process: lessons learned from ESA-CCI RECCAP2. Carbon Balance Management, 17:15.Search in Google Scholar

Breidenbach, J., Granhus, A., Hylen, G., Eriksen, R., Astrup, R., 2021: A century of National Forest Inventory in Norway – informing past, present, and future decisions. Forest Ecosystems, 7:46.Search in Google Scholar

Cerný, M., Kučera, M., Cienciala, E., Beranova, J., 2010: National Forest Inventories: chapter 8, Czech Republic. In: Tomppo, E., Gschwantner, T., Lawrence, M., McRoberts, R. E. (eds.): National Forest Inventories: Pathways for Common Reporting. Berlin, Springer Science+Business Media B. V., p.145–156.Search in Google Scholar

Efimov, O., Gura, D., Makar, S., Mustafin, R., 2022: Potential for carbon sequestration and the actual forest structure: the case of Krasnodar Krai in Russia. Central European Forestry Journal, 68:15–22.Search in Google Scholar

Filipchuk, A. N., Malysheva, N. V., Zolina, T. A., Yugov, A. N., 2020: Russia’s boreal forests: opportunities for climate change mitigation. Forestry Information Electronic Weblog, 1:92–113. (In Russian).Search in Google Scholar

Filipchuk, A. N., Malysheva, N. V., Yugov, A. N., Zolina, T. A., Mironov, R. Yu., 2021: State forest inventory data as a new information base for estimating carbon stocks and carbon removals by forests: the feasibility and prospects for use in national reporting under international agreements. IOP Conference Series: Earth Environmental Science, 876:012028.Search in Google Scholar

Fridman, J., Holm, S., Nilsson, M., Nilsson, P., Ringvall, A. H., Ståhl, G., 2014: Adapting National Forest Inventories to changing requirements – the case of the Swedish National Forest Inventory at the turn of the 20th century. Silva Fennica, 48:1095.Search in Google Scholar

Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L., Hauck, J. et al., 2022: Global Carbon Budget 2022. Earth System Science Data, 14:4811–4900.Search in Google Scholar

Girona, M. M., Morin, H., Gauthier, S., Bergeron, Y., 2023: Boreal forests in the face of climate change. Advances in Global Change Research 74. Switzerland, Springer, 837 p.Search in Google Scholar

Grassi, G., House, J., Kurz, W. A., Cescatti, A., Houghton, R. A., Peters, G. P. et al., 2018: Reconciling global-model estimates and country reporting of anthropogenic forest CO2 sinks. Nature Climate Change, 8:914–920.Search in Google Scholar

Högberg, P., Ceder, L. A., Astrup, R., Binkley, D., Dalsgaard, L., Egnell, G. et al., 2021: Sustainable boreal forest management – challenges and opportunities for climate change mitigation. Report from an Insight Process conducted by a team appointed by the International Boreal Forest Research Association (IBFRA). Jönköping, Swedish Forest Agency, 61 p.Search in Google Scholar

Isaev, A. S., Korovin, G. N., 1999: Carbon in Northern Eurasian forests Russian carbon cycle. In: Zavarzin, G. A. (ed.): Selected papers on global environment and climate change. Moscow, RAS, p. 63–95. (In Russian).Search in Google Scholar

Kindermann, G. E., McCallum, I., Fritz. S., Obersteiner, M., 2008: A global forest growing stock, biomass and carbon map based on FAO statistics. Silva Fennica, 42:387–396.Search in Google Scholar

Korhonen K., 2016: Chapter 19 Finland. In: Vidal, C., Alberdi, I., Hernandez, L., Redmond, J. (eds.): National Forest Inventories: Assessment of Wood Availability and Use. Switzerland, Springer International Publishing, p. 369–384.Search in Google Scholar

Korhonen, K. T., Ahola, A., Heikkinen, J., Henttonen, H. M., Hotanen, J.-P., Ihalainen, A. et al., 2021: Forests of Finland 2014–2018 and their development 1921–2018. Silva Fennica, 55:10662.Search in Google Scholar

Mäkipää, R., Cienciala, E., Green C., Gracia C., Lehtonen A., Muukkonen P. et al., 2005: Effective exploitation of existing information related to BEF ensured and gaps of knowledge on BEFs of different tree species by regions identified and reported. Multisource inventory methods for quantifying carbon stocks and stock changes in European forests. CarboInvent. Final report for Devilerable 2.2. Finland, Metla, 258 p.Search in Google Scholar

Malysheva, N., Zolina, T., Tsyplenkov. A., Filipchuk, A., 2020: GIS support of carbon sequestration, emissions and balance assessment for Russian forests. In: Bandrova, T., Konečný, M., Marinova, S. (eds): Proceedings of the 8th International Conference on Cartography and GIS. Nessebar, Bulgaria. June 20–25, 2020. Sofia, Bulgarian Cartographic Association, v1, p. 232–241.Search in Google Scholar

Malysheva, N., Filipchuk, A., Zolina, T., Sil’nyagina G., 2019: Quantitative assessment of coarse woody debris in the forests of the Russian Federation according to the state forest inventory data. Forestry Information Electronic Weblog, 1:101–128. (In Russian).Search in Google Scholar

Margolis, H. A., Nelson, R. F., Montesano, P. M., Beaudoin, A., Sun, G., Andersen, H.-E. et al., 2015: Combining satellite lidar, airborne lidar, and ground plots to estimate the amount and distribution of aboveground biomass in the boreal forest of North America. Canadian Journal of Forest Research, 45:838–855.Search in Google Scholar

Merganič, J., Merganičová, K., Konôpka, B., Kučera, M., 2017: Country and regional carbon stock in forest cover – estimates based on the first cycle of the Czech National Forest Inventory data (2001–2004). Central European Forestry Journal, 63:113–125.Search in Google Scholar

Národní inventarizace lesů v České Republice 2001–2004. Úvod, metody, výsledky. National Forest Inventory in the Czech Republic 2001–2004. Introduction, methods results. 2007. Brandýs nad Labem, Ústav pro hospodářskou úpravu lesů Brandýs nad Labem. Forest Management Institute, 224 p.Search in Google Scholar

Pechanec, V., Stržínek, F., Purkyt, J., Štěrbová, L., Cudlín, P., 2017: Carbon stock in forest aboveground biomass – comparison based on Landsat data. Central European Forestry Journal, 63:126–132.Search in Google Scholar

Quegan, S., Toan, T. L., Chave, J., Dall, J., Exbrayat, J.-F., Tong Minh, D. H. et al., 2019: The European Space Agency BIOMASS mission: Measuring forest above-ground biomass from space. Remote Sensing of Environment, 227:44–60.Search in Google Scholar

Tomppo, E., Heikkinen, J., Henttonen, H. M., Ihalainen, A., Katila, M., Mäkelä, H. et al., 2011: Designing and Conducting a Forest Inventory – case: 9th National Forest Inventory of Finland. Dordrecht, Heidelberg, London, New York, Springer Science+Business Media B.V., 270 p.Search in Google Scholar

Santoro, M., Cartus, O., 2019: ESA Biomass Climate Change Initiative (Biomass_cci): Global datasets of forest above-ground biomass for the year 2017, v1. Centre for Environmental Data Analysis (CEDA).Search in Google Scholar

Santoro, M., Cartus, O., Carvalhais, N., Rozendaal, D. M. A., Avitabile, V., Araza, A. et al., 2021: The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations. Earth System Science Data, 13:3927–3950.Search in Google Scholar

Schepaschenko, D., Moltchanova, E., Shvidenko, A., Blyshchyk, V., Dmitriev, E., Martynenko, O. et al., 2018: Improved estimates of biomass expansion factors for Russian forests. Forests, 9:312.Search in Google Scholar

Šebeň, V., Kučera, M., Konôpka, B., Merganičová, K., 2018: The current state of non-forest land in the Czech Republic and Slovakia – forest cover estimates based on the national inventory data. Central European Forestry Journal, 64:207–222.Search in Google Scholar

Shvidenko, A. Z., Schepaschenko, D. G., Nilsson, S., Buluy, Yu. I., 2008: Tables and models of growth and productivity of forests of major forest forming species of Northern Eurasia (standard and reference materials). Moscow, Federal Agency of Forest Management of Russia and International Institute for Applied Systems Analysis, 886 p.Search in Google Scholar

Shvidenko, A. Z., Schepaschenko, D., Nilsson, S., 2009: Assessment of woody detritus in forests of Russia. Forest Survey and Forest Management, 1:133–147. (In Russian).Search in Google Scholar

Shvidenko, A. Z., Schepaschenko, D. G., 2014: Carbon budget of Russian forests. Siberian Forest Journal, 1:69–92. (In Russian).Search in Google Scholar

Solontsov, O., Martinuk, A., Bukas, A., 2016: National Forest Inventory of the Russian Federation. In: Vidal, C., Alberdi, I., Hernandez, L., Redmond, J. (eds): National Forest Inventories. Assessment of Wood Availability and Use. Switzerland, Springer International Publishing, p. 699–708.Search in Google Scholar

Somogyi, Z., Cienciala, E., Mäkipää, R., Muukkonen, P., Lehtonen, A., Weiss, P., 2006: Indirect methods of large-scale forest biomass estimation. European Journal of Forest Research, 126:197–207.Search in Google Scholar

Spawn, S. A., Sullivan, C. C., Lark, T. J., Gibbs, H. K., 2020: Harmonized global maps of above and below-ground biomass carbon density in the year 2010. Scientific Data, 7:112.Search in Google Scholar

Stinson, G., Kurz, W. A., Smyth, C. E., Neilson, E. T., Dymond, C. C., Metsaranta, J. M. et al., 2011: An inventory-based analysis of Canada’s managed forest carbon dynamics. 1990 to 2008. Global Change Biology, 17:2227–2244.Search in Google Scholar

Sun, W., Liu, X., 2020: Review on carbon storage estimation of forest ecosystem and applications in China. Forest Ecosystems, 7:4.Search in Google Scholar

Usoltsev, V. A., 2002: Forest biomass of Northern Eurasia: mensuration standards and geography. Yekaterinburg, Ural Branch of RAS, 763 p. (In Russian).Search in Google Scholar

Usoltsev, V. A., Chasovskikh, V. P., Noritsina, Yu. V., Noritsin, D. V., 2016: Allometric phytomass tree models for laser scanning and ground survey: comparative analysis. Siberian Forest Journal, 4:68–76. (In Russian).Search in Google Scholar

Wei, Y., Li, M., Chen, H., Lewis, B. J., Yu, D., Zhou, L. et al., 2013: Variation in carbon storage and its distribution by stand age and forest type in boreal and temperate forests in northeastern China. PLoS ONE, 8:e72201.Search in Google Scholar

Wellbrock, N., Grüneberg, E., Riedel, T., Polley, H., 2017: Carbon stocks in tree biomass and soils of German forests. Central European Forestry Journal, 63:113–125.Search in Google Scholar

Yarie, J., Billings, S., 2002: Carbon balance of the taiga forest within Alaska: Present and future. Canadian Journal of Forest Research, 32:757–767.Search in Google Scholar

Zamolodchikov, D. G., Grabovskij, V. I., Chestnyh, O. V., 2018: Dynamics of carbon balance in forests of federal districts of the Russian Federation. Issues of Forest Science, 1:1–24. (In Russian).Search in Google Scholar

Analytical Review of State, Quantity and Quality of the Russian Federation Forests according to Permanent Sample Plots of the State Forest Inventory, 2023. Moscow, Federal Forestry Agency, 14 p. (In Russian).Search in Google Scholar

ESA DUE GlobBiomass, 2010. Available at http://globbiomass.org/products/global-mapping.Search in Google Scholar

Forest Europe, 2020: State of Europe’s Forests 2020. Liaison Unit Bratislava, Zvolen, NLC, 394 p.Search in Google Scholar

FRA FAO, 2020a: Global forest resource assessment 2020 – country report: Canada. Rome, FAO, 70 p. Available at: https://www.fao.org/3/ca9983en/ca9983en.pdf.Search in Google Scholar

FRA FAO, 2020b: Global forest resource assessment 2020 – country report: China. Rome, FAO, 81 p. Available at: https://www.fao.org/3/ca9980en/ca9980en.pdf.Search in Google Scholar

FRA FAO, 2020c: Global forest resource assessment 2020 – country report: Finland. Rome, FAO, 58 p. Available at: https://www.fao.org/3/ca9995en/ca9995en.pdf.Search in Google Scholar

FRA FAO, 2020d: Global forest resource assessment 2020 – country report: Japan. Rome, FAO, 61 p. Available at: https://www.fao.org/3/cb0016en/cb0016en.pdf.Search in Google Scholar

FRA FAO, 2020i: Global forest resource assessment 2020 – country report: Norway. Rome, FAO, 60 p. Available at: https://www.fao.org/3/cb0042en/cb0042en.pdf.Search in Google Scholar

FRA FAO, 2020f: Global forest resource assessment 2020 – country report: Russian Federation. Rome, FAO, 77 p. Available at: https://www.fao.org/3/cb0053en/cb0053en.pdf.Search in Google Scholar

FRA FAO, 2020g: Global forest resource assessment 2020 – country report: Sweden. Rome, FAO, 57 p. Available at: https://www.fao.org/3/cb0063en/cb0063en.pdf.Search in Google Scholar

FRA FAO, 2020h: Global forest resource assessment 2020 – country report: USA. Rome, FAO, 156 p. Available at: http://www.fao.org/3/cb0086en/cb0086en.pdf.Search in Google Scholar

Global Carbon Atlas, 2021. Available at http://globalcarbonatlas.org/en/content/welcome-carbon-atlas. IPCC, 2003: Good Practice Guidance for Land Use. Search in Google Scholar

Land-Use Change and Forestry. Hayama. Kanagawa. Japan, Institute for Global Environmental Strategies, 590 p.Search in Google Scholar

IPCC, 2006a: Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture. Forestry and Other Land Use. Japan, Institute for Global Environmental Strategies, 84 p.Search in Google Scholar

IPCC, 2006b: Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture. Forestry and Other Land Use. Annex 2: Summary of equations. Japan, Institute for Global Environmental Strategies, 34 p.Search in Google Scholar

ORNL DAAC, 2010. Available at https://daac.ornl.gov/cgi-bin/theme_dataset_lister.pl?theme_id=5.Search in Google Scholar

Santoro, M., 2018: GlobBiomass – global datasets of forest biomass. PANGAEA. Available at https://doi.org/10.1594/PANGAEA.894711.Search in Google Scholar

UNFCCC NIR RF, 2022: The national report of the Russian Federation on the inventory of anthropogenic emissions and sinks of greenhouse gases not controlled by the Montreal Protocol for the years 1990–2020. Moscow, Roshydromet, 468 p. (In Russian).Search in Google Scholar

UNFCCC COP 26, 2021. Available at https://ukcop26.org/glasgow-leaders-declaration-on-forests-and-land-use.Search in Google Scholar

eISSN:
2454-0358
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Plant Science, Ecology, other